MIT KAVLI INSTITUTE HETG/LETG — Status Chandra Quarterly Review No. 52 17 November 2021

David Huenemoerder <u>dph@space.mit.edu</u> (<u>https://space.mit.edu/HETG/#reports</u>)

HETG IPI: Prof. C.R. Canizares MIT Kavli Institute

LETG IPIs: Dr. Peter Predehl Max Planck Institute

> Dr. Jelle Kaastra SRON

HETG GTO Science Program

1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1							
Proposal Cycle 22:							
★ Stars:	ρ Oph A	0/200 ks	Winds of OB stars; magnetic confinement				
★AGN:	Mrk 335	82 ks	Jets, disks, outflows, variability (w/NuSTAR, NICER).				
★AGN:	NGC 1365	295 ks	Seyfert 1.8 galaxy; outflow, variability.				
★BH:	SS 433	210 ks	Stellar mass black hole; relativistic jets, variability				
★NS:	Terzan 5 X-2	0/200 ks	Neutron Star outburst (TOO)				
★NS:	Cen X-4	0/60 ks	Neutron Star outburst (TOO)				
★NS:	4U 1820-30	175 ks	Neutron Star outburst; gravitational redshift, NS radius (TOO)				
★ISM:	GX 3+1	0/100 ks	Silicon K-edge structure and variability				
★ISM:	GX 17+2	28/100 ks	Silicon gas-to-dust ratio (part of ISM survey)				
★XRB:	4U 1626-67	0/60 ks	Ultra-compact binary; monitor disk line shapes				

Proposal Cycle 23:

★ Stars:	πAqr	0/100 ks	Winds of the hottest stars	
★AGN:	Circinus Galaxy	0/70 ks	Emission lines, morphology, variability	y (IXPE-coordinated)
★XRB:	Cen X-3	0/62 ks	Eclipsing X-ray pulsar; accretion	
★XRB:	4U 1629-67	0/90 ks	Ultra-compact binary; monitor Fe lines	5.
★XRB:	GX 1+4	0/90 ks	Low-mass XRB; accretion, Compton s	houlder study.
★ISM:	GX 340+0	0/150 ks	Cosmic dust composition	
★ULX/N	NS: M33 X-8	0/92 ks	Pulsar wind outflow, absorption	AGN: Active Galactic Nucleus
★ULX:	LMC/SMC X-?	0/70 ks	Accretion disk outbursts (TOO)	ISM: InterStellar Medium
★NS:	Terzan 5 X-2	0/200 ks	Neutron Star outburst (TOO)	NS: Neutron Star
		and the second second		ULX: Ultra-Luminous X-ray source
Sanda a	A CONTRACTOR			SNR: SuperNova Remnant

HETG; Chandra Quarterly #52, 17 Nov 2021

XRB: X-ray Binary

LMXB: Low Mass XRB

LETG GTO Science Program

Proposal Cycle 22:

MIT KAVLI INSTITUTE

	r toposur Cycle 22.							
\star	Stars (Predehl/MPE)	RX J0859.1+0537	60 ks Accr	retion onto white dwarfs (LETG/HRC-S)				
\star	Stars (Predehl/MPE)	RX J1002.2-1925	0/48 ks Acc	retion onto white dwarfs (LETG/HRC-S)				
\star	AGN (Predehl/MPE)	HSC J092120.56+000722.9	21 ks Con	firmation of faint z=6.56 eROSITA Quasar (ACIS-S)				
\star	AGN (Predehl/MPE)	2MASX J09325962+04050	62 50 ks Conf	irmation of eROSITA Compton-thick Seyfert (ACIS-S)				
\star	AGN (Kaastra/SRON)) MR 2251-178	62/175 ks Galax	xy outflows, absorption line density diagnostics (LETG/HRC-S)				
Proposal Cycle 23:								
\star	Stars (Predehl/MPE)	LTT 1445A	0/50 ks	High energy environments of terrestrial exoplanets				
\star	Stars (Predehl/MPE)	L 168-9	0/25 ks	High energy environments of terrestrial exoplanets				
\star	SNR (Predehl/MPE)	Hoinga	0/60 ks	Distance determination				
\star	AGN (Predehl/MPE)	WISEA J202040.85-621	509.3 0/30 ks	Confirm eRosita detection of a z=5.9 quasar				

3

★ Galaxies (Kaastra/SRON) Abell 141

Intercluster temperatures, merger history 0/175 ks

AGN: Active Galactic Nucleus BH: Black Hole ISM: InterStellar Medium NS: Neutron Star SN: SuperNova ULX: Ultra-Luminous X-ray source SNR: SuperNova Remnant XRB: X-ray Binary LMXB: Low Mass XRB

HETG; Chandra Quarterly #52, 17 Nov 2021

What if a grating did not fully insert? How could we tell?

HETG; Chandra Quarterly #52, 17 Nov 2021

MIT KAVLI INSTITUTE

Ray-trace spot diagram and histograms for complete insertion, and for 1/2 degree offset:

HETG; Chandra Quarterly #52, 17 Nov 2021

Science Highlights (published in the past 6 months) - 1

MIT KAVLI INSTITUTE

Extended sources, higher orders, spatial and spectral resolution:

THE ASTROPHYSICAL JOURNAL, 913:17 (17pp), 2021 May 20 © 2021. The American Astronomical Society. All rights reserved.

X-Ray Constraint on the Location of the AGN Torus in the Circinus Galaxy

Ryosuke Uematsu¹[®], Yoshihiro Ueda¹[®], Atsushi Tanimoto²[®], Taiki Kawamuro^{3,4}[®], Kenta Setoguchi¹[®], Shoji Ogawa¹[®], Satoshi Yamada¹[®], and Hirokazu Odaka^{2,5}

Their Figure 6: HETG 1st, 2nd, & 3rd order fits, also accounting for spatial extent.

Circinus zeroth order (H.Marshall, 2017, Chandra News 24)

10"

Fe K velocity widths give an inner radius to the accretion disk which is much smaller than that of dust emission.

HETG; Chandra Quarterly #52, 17 Nov 2021

Science Highlights (published in the past 6 months) - 2

Blind searches for spectral features are becoming more common.

HETG; Chandra Quarterly #52, 17 Nov 2021

Science Highlights (HETG GTO, Cycle 21, in progress)

MIT KAVLI INSTITUTE

Pragati Pradhan (MIT Postdoc)

IGR J16318-4848

Highly absorbed, High Mass X-ray Binary

 $(N_{\rm H} \sim 10^{24} {\rm ~cm^{-2}})$

Narrow lines -> likely from compact region

Weak/missing Compton shoulder -> geometry, or composition

(Analysis underway, in conjunction with HETG zeroth order and NuSTAR spectra.)

