HETG/LETG — Status

Chandra Quarterly Review No. 53

26 May 2022

Norbert S. Schulz <u>nss@space.mit.edu</u> (https://space.mit.edu/HETG)

HETG IPI: Prof. C.R. Canizares MIT Kavli Institute

LETG IPIs: Dr. Peter Predehl Max Planck Institute

> Dr. Jelle Kaastra SRON

HETG GTO Science Program

Proposal Cycle 22:						
+ Stars: ρ Oph A 111/200 ks Winds of OB stars; magnetic confinement						
★AGN: Mrk 335	AGN: Mrk 335 82 ks Jets, disks, outflows, variability (w/NuSTAR, NICER).					
★AGN: NGC 1365	AGN: NGC 1365 295 ks Seyfert 1.8 galaxy; outflow, variability.					
★BH: SS 433	33 210 ks Stellar mass black hole; relativistic jets, variability					
★NS: Terzan 5 X-2	0/200 ks Neutron Star outburst (TOO)					
★NS: Cen X-4	0/60 ks Neutron Star outburst (TOO)					
★NS: 4U 1820-30	★NS: 4U 1820-30 175 ks Neutron Star outburst; gravitational redshift, NS radius (TOO)					
★ISM: GX 3+1 0/100 ks Silicon K-edge structure and variability						
★ISM: GX 17+2	★ISM: GX 17+2 66/100 ks Silicon gas-to-dust ratio (part of ISM survey)					
★XRB: 4U 1626-67	58 ks Ultra-compact binary; monitor disk line sh	apes				
Proposal Cycle 23 :						
\star Stars: π Aqr 0/100 ks Winds of the hottest stars						
★AGN: Circinus Galaxy 0/70 ks Emission lines, morphology, variability (IXPE-coordinated)						
★XRB: Cen X-3 0/62 ks Eclipsing X-ray pulsar; accretion						
★XRB: 4U 1629-67 89.9/90 ks Ultra-compact binary; monitor Fe lines.						
★XRB: GX 1+4 0/90 ks Low-mass XRB; accretion, Compton shoulder study.						
★ISM: GX 340+0	28/150 ks Cosmic dust composition	AGN: Active Galactic Nucleus				
★ULX/NS: M33 X-8	28/92 ks Pulsar wind outflow, absorption	BH: Black Hole				
★ULX: LMC/SMC X-? 0/70 ks Accretion disk outbursts (TOO)						
★NS: Terzan 5 X-2	0/200 ks Neutron Star outburst (TOO)	SN: SuperNova				
		ULA. UILIA-LUIIIIIIOUS A-IAV SOUICE				

All Caller and the second

A STATE OF STATE

SNR: SuperNova Remnant

XRB: X-ray Binary

LMXB: Low Mass XRB

Proposal Cycle 22:

\star	Stars (Predehl/MPE)	RX J0859.1+0537	60 ks Accretion onto white dwarfs (LETG/HRC-S)
\star	Stars (Predehl/MPE)	RX J1002.2-1925	0/48 ks Accretion onto white dwarfs (LETG/HRC-S)
\star	AGN (Predehl/MPE)	HSC J092120.56+000722.9	21 ks Confirmation of faint z=6.56 eROSITA Quasar (ACIS-S)
\star	AGN (Predehl/MPE)	2MASX J09325962+0405062	2 50 ks Confirmation of eROSITA Compton-thick Seyfert (ACIS-S)
\star	AGN (Kaastra/SRON)	MR 2251-178 62	/175 ks Galaxy outflows, absorption line density diagnostics (LETG/HRC-S)

Proposal Cycle 23:

\star	Stars (Predehl/MPE)	LTT 1445A	0/50 ks	High energy environments of terrestrial exoplanets
\star	Stars (Predehl/MPE)	L 168-9	0/25 ks	High energy environments of terrestrial exoplanets
\star	SNR (Predehl/MPE)	Hoinga	0/60 ks	Distance determination
\star	AGN (Predehl/MPE)	WISEA J202040.85-621509.	3 0/30 ks	Confirm eRosita detection of a z=5.9 quasar
\star	Galaxies (Kaastra/SRON)	Abell 141	0/175 ks	Intercluster temperatures, merger history

HETG Higher Order Calibration (in progress)

Science Highlights (published in the past 12 months) - 1

MIT KAVLI INSTITUTE

0.01 Photons $cm^{-2} \; s^{-1} \; \mathring{A}^{-1}$ 10-3 10-4 **3**0-5 $\Delta C/|\Delta C|^{1/2} |\Delta C/|\Delta C|^{1/2}$ ահերություն 0 പ്പ ß 0 2 5 10 20 Wavelength (Å)

High/Low flux phase during eclipse in 4U 1700-37:

Strong fluorescence lines Fe, Ca, Ar, S, Si Located throughout bulk of wind Weak ionized lines: S, Si, Mg (no Fe, Ca, Ar) Originate close to neutron star

Probing clumped winds with neutron stars in HMXBs:

Martinez-Chicharro et al. 2021, ApJ, 592, 516 4U 1700-37 in eclipse

Strong fluorescence lines Fe, Ca, Ar, S, Si

Strong ionized lines: S, Si, Mg (no Fe, Ca, Ar)

The Nature of X-rays in the Orion Nebula Cluster: A HETG Legacy project

The release features 36 HETG spectra:

4 massive stars (likely all ~ZAMS) 8 intermediate PMS mass stars 24 low-mass PMS stars Early Cycles: 585 ks (90% GTO) Cycles 21/22: 1.65 Ms (100% GO))

April 26 2022: First Release of confusion cleaned 1st order HETG spectra

The co-added HEG 2nd and MEG 3rd: orders of six He-like triplets: Mg XI, Si XIII, S XV, Ar XVII, Ca XIX and Fe XXV for 2.2 Ms of data from Θ¹ Ori C

Jun Yang (MIT Postdoc)

Gas edge @ 1.839 keV -> probes neutral atomic gas

Dust edge at 1.844 keV -> probes neutral dust

Ionized Si -> weak Si II, III, Si XII, Si XIII

Possible HETG calibration probe involving the SiO₂ gate structure of front-illuminated CCDs.

Si K edge structure of LMXBs towards the Galactic Bulge

9 Highly absorbed Low Mass X-ray Binaries $(N_{\rm H} \sim 4 \times 10^{21} - 9 \times 10^{22} \text{ cm}^{-2})$

end

