Effects of a Warm ACIS Focal Plane on HETGS Spectroscopy

Herman Marshall, Norbert Schulz, and Dave Huenemoerder (MIT)

June 11, 2020

Warm ACIS: Non-Issues

- **Dispersion relation**
 - Only depends on grating P, Rowland distance, ACIS scale
 - Effect on ACIS scale is negligible
- Line response function
 - Only depends on grating dP/P, HRMA PSF, ACIS pixel size
 - ACIS T does not affect these noticeably
- Grating efficiencies or HRMA area
- Cross dispersion profile
 - Determines aperture correction
 - Depends on HRMA PSF and Rowland geometry

Marshall, Schulz, & Huenemoerder

2 /11

Effects on HETGS EA

- Increased detector hot pixels
 - Impact mitigated by dithering
 - HEG/MEG and +1/-1 provide complementary data
- Reduced detector QE
- Order selection
 - Separating orders no problem due to wide order separation
 - Accounting for PH selection fraction
 - Gain changes centroid of selection
 - RMF may be broader when warm

Marshall, Schulz, & Huenemoerder

QE Effects (from NSS)

- Data:
 - θ¹ Ori C: 1999, 2002
 - θ¹ Ori C: 2019-2020
 - 4U 1626-67: 2018
- Result
 - No temperature dependence
 - Losses < 3% at -109°C

Marshall, Schulz, & Huenemoerder

RMF Effects (from DPH)

Marshall, Schulz, & Huenemoerder

ObsID 23120 MEG

RMF Effects 2

S1_heg_1.5_-116.8

- Data sets
 - 4U 1626 (2018)
 - θ¹ Ori C: 2019-2020
 - Capella had poor gain correction
- Processing
 - Accumulate PH distributions
 - Fit Gaussians
 - Separate by T

Marshall, Schulz, & Huenemoerder

S2_heg_2.1_-113.4

Warm HETGS Operations

6 /11

- Centroids
 - Slight variations in <E/E₀>
 - Assume < 0.4% shift
- Widths
 - σ/E_0 changes inconsistent
 - -1.6 ± 0.8% for 4U 1626
 - $-9.6 \pm 1.2\%$ for θ^1 Ori C
 - Assume < 5% smaller

RMF Effects Analysis

- RMF Center: Gaussian
 - dominates OSIP
 - **possible** weak change with FP TEMP
- RMF tail
 - escape peak at 2 keV
 - otherwise < 2% of total
 - no change with FP_TEMP
- \rightarrow Concentrate on Gaussian

Marshall, Schulz, & Huenemoerder

Effect of Centroid Shift

- Shifting RMF reduces power in OSIP region
- Model:

$$f = \int_{-a}^{a} \phi(x) dx, \quad \phi(x) = \frac{1}{(2\pi)^{1/2} \sigma} e^{(x-\mu)^2/2\sigma^2}$$

 $x = E/E_0, \quad \mu = \overline{E}/E_0$

• Let
$$\mu = \mu_0 + \Delta \mu$$

Then
$$\delta f \approx \frac{a\Delta\mu}{(2\pi)^{1/2}\sigma}e^{-\frac{a^2}{2}}$$

• Verified approximation with simulation

Marshall, Schulz, & Huenemoerder

Effect of Wider RMF

- Wider RMF reduces power in OSIP region
- Same Gaussian model
- Let $\sigma = \sigma_0 + \Delta \sigma$

Then
$$\delta f \approx \frac{2\Delta\sigma}{(2\pi)^{1/2}\sigma}e^{-\frac{a^2}{2}}$$

 Verified approximation with simulation

Marshall, Schulz, & Huenemoerder

- Effect of higher T on QE looks negligible
- < 1% effect on OSIP due to possible shift of RMF centroid
- <~ 1% effect on OSIP due to possibly wider RMF
- Caveats:
 - Small RMF effects need more data
 - Some inconsistencies between data sets
- Impression: **OK to use HETGS** with warmer ACIS

Marshall, Schulz, & Huenemoerder

Conclusions

