

Chandra X-Ray Center

MEMORANDUM

June 22, 2014

To: Jo	onathan McDowell, SDS Group Leader
From: G	Glenn E. Allen, SDS
Subject: a	cis_build_chip_gti
Revision: 2.	.0
URL: ht	ttp://space.mit.edu/CXC/docs/docs.html #gti
File: /i	$inconceivable/d0/SDS/specs/acis_build_chip_gti/acis_build_chip_gti_2.0.tex$

1 acis_build_chip_gti

1.1 Description

For an ACIS CCD, a good-time interval (GTI) is a continuous set of frames during which the detector operated nominally.

1.2 Input

- 1. A Level 1 exposure-statistics file (acis*stat1.fits)
- 2. A Level 1 event-data file (acis*evt1.fits) (This file is also the output file.)
- 3. One or more Level 1 aspect-solution file(s) (pcad*asol1.fits)
- 4. A parameter file that includes a list of the CALDB files used by pixlib
- 5. The CCD_ID of the aim-point CCD
- 6. A parameter that indicates whether continuous-clocking mode event times are the times of arrival or the read-out times

1.3 Output

The input Level 1 event-data file is modified to include

- several exposure-related keywords and
- one GTI HDU for each valid CCD.

1.4 Parameters

- 1. infile,f,a, "",,, "Name of input exposure-statistics file"
- 2. outfile,f,a, "",,, "Name of event-data file to be modified"
- 3. aspfile,f,a,"",,,"Name(s) of input aspect-solution file(s)"
- 4. geompar, f, h, "geom", ,, "Name of input pixlib parameter file"
- 5. nominalchip,s,h, "default", default |0|1|2|3|4|5|6|7|8|9,, "Aim-point CCD_ID"
- 6. calc_cc_times,b,h, "yes", yes | no,, "Are the event times for a CC-mode observation the times of arrival?"
- 7. verbose, i,h,0,0,5, "Amount of messages produced (0=none, 5=most)"
- 8. mode,s,h,"ql",,,

1.5 Processing

- 1. Error checking:
 - (a) infile:
 - i. If the infile does not exist, then acis_build_chip_gti exits with an error message.
 - ii. If the infile exists, but the file permissions do not allow it to be read, then acis_build_chip_gti exits with an error message.
 - iii. If the infile does not have an HDU $h_{\rm in}$ with the keyword

$$CONTENT = EXPSTATS, (1)$$

then acis_build_chip_gti exits with an error message.

iv. If HDU $h_{\rm in}$ does not include the header keywords

- FLSHTIME,
- TIMEDEL, and
- TIMEPIXR,

then acis_build_chip_gti exits with an error message. Hereafter the values of these keywords are referred to as $FLSHTIME_{in}$, $TIMEDEL_{in}$, and $TIMEPIXR_{in}$, respectively.

- v. If HDU h_{in} does not include a binary table with the columns
 - CCD_ID,
 - EVTSENT,
 - EXPNO, and
 - TIME,

then acis_build_chip_gti exits with an error message. Hereafter these columns are referred to as CCD_ID_{in}, EVTSENT_{in}, EXPNO_{in}, and TIME_{in}, respectively.

- (b) outfile:
 - i. If the outfile does not exist, then acis_build_chip_gti exits with an error message.
 - ii. If the outfile exists, but the file permissions do not allow it to be read and modified, then acis_build_chip_gti exits with an error message.
 - iii. If the outfile does not have an HDU $h_{\rm out}$ with the keyword

$$CONTENT = EVT1, (2)$$

then acis_build_chip_gti exits with an error message.

iv. If HDU $h_{\rm out}$ of the outfile does not include the header keyword

• DATAMODE,

then acis_build_chip_gti exits with an error message. Hereafter the value of this keyword is referred to as $DATAMODE_{out}$.

v. If

$\texttt{DATAMODE}_{\mathrm{out}}$	\neq	CC33_FAINT and	(3)
$\texttt{DATAMODE}_{\mathrm{out}}$	\neq	CC33_GRADED and	(4)
$\texttt{DATAMODE}_{\mathrm{out}}$	\neq	FAINT and	(5)
$\texttt{DATAMODE}_{\mathrm{out}}$	\neq	FAINT_BIAS and	(6)
$\texttt{DATAMODE}_{\mathrm{out}}$	\neq	GRADED and	(7)
$\texttt{DATAMODE}_{\mathrm{out}}$	\neq	VFAINT,	(8)

then acis_build_chip_gti exits with an error message.

vi. If

$$DATAMODE_{out} = CC33_FAINT or$$
 (9)

$$DATAMODE_{out} = CC33_GRADED,$$
(10)

if the parameter calc_cc_times = no, and if HDU h_{out} does not include the keywords RA_TARG and DEC_TARG, then acis_build_chip_gti exits with an error message. Hereafter the values of these keywords are referred to as RA_TARG_{out} and DEC_TARG_{out}, respectively.

- vii. If HDU h_{out} does not include a binary table with the columns
 - \bullet CCD_ID and
 - EXPNO,

then $acis_build_chip_gti$ exits with an error message. Hereafter these columns are referred to as CCD_ID_{out} and EXPNO_{out}, respectively.

- (c) aspfile:
 - i. If the aspfile does not exist, then acis_build_chip_gti exits with an error message.
 - ii. If the aspfile exists, but the file permissions do not allow it to be read, then acis_build_chip_gti exits with an error message.
 - iii. If the aspfile does not have an HDU $h_{\rm asp}$ that has the keyword

$$CONTENT = ASPSOL,$$
 (11)

then acis_build_chip_gti exits with an error message.

iv. If HDU $h_{\rm asp}$ does not include a binary table with the columns

- DEC,
- DTHETA,
- DY,
- DZ,
- RA,
- ROLL, and
- TIME

then acis_build_chip_gti exits with an error message.

- (d) nominalchip:
 - i. The parameter string nominalchip is converted to contain only lower case letters.

nominalchip	\neq	default and	(12)
nominalchip	\neq	0 and	(13)
nominalchip	\neq	1 and	(14)
nominalchip	\neq	2 and	(15)
nominalchip	\neq	3 and	(16)
nominalchip	\neq	4 and	(17)
nominalchip	\neq	5 and	(18)
nominalchip	\neq	6 and	(19)
nominalchip	\neq	7 and	(20)
nominalchip	\neq	8 and	(21)
nominalchip	\neq	9,	(22)

then acis_build_chip_gti exits with an error message.

(e) calc_cc_times:

i. The parameter string calc_cc_times is converted to contain only lower case letters.

ii. If

calc_cc_times
$$\neq$$
 yes and (23)

 $calc_cc_times \neq no,$ (24)

then acis_build_chip_gti exits with an error message.

2. DTCOR:

The value of DTCOR, which does not depend on the CCD_ID, is given by the following expressions.

 $DATAMODE_{out} = VFAINT,$

(a) If

$$DATAMODE_{out} = FAINT \text{ or}$$
 (25)

$$DATAMODE_{out} = FAINT_BIAS \text{ or } (26)$$

$$DATAMODE_{out} = GRADED \text{ or}$$
 (27)

(28)

then

$$DTCOR = \frac{TIMEDEL_{in} - 0.04104}{TIMEDEL_{in} + FLSHTIME_{in}}.$$
(29)

(b) If

$$DATAMODE_{out} = CC33_FAINT or$$
 (30)

$$DATAMODE_{out} = CC33_GRADED, \qquad (31)$$

then

$$DTCOR = 0.99609375$$
 (32)

(i.e. 510/512).

3. Valid CCD_IDs:

The set of valid CCD_IDs is identified. Here, CCD_ID c is defined as valid if there are one or more rows (i.e. frames) in HDU $h_{\rm in}$ of the infile where CCD_ID_{in} = c or if there are one or more rows (i.e. events) in HDU $h_{\rm out}$ of the outfile where CCD_ID_{out} = c. If there are no valid CCD_IDs, then acis_build_chip_gti exits with an error message.

4. For each valid CCD_ID:

The following steps are performed for each valid $CCD_ID c$.

(a) Identify the valid EXPNOs: An EXPNO is valid for CCD_ID c if

$$CCD_ID_{in}[r_{in}] = c, \qquad (33)$$

$$\texttt{EXPNO}_{in}[r_{in}] \geq \texttt{EXPNO}_{min}, \tag{34}$$

and

i. if $EVTSENT_{in}[r_{in}] = 0$, then the total number of rows N_{out} where

$$CCD_{ID_{out}}[r_{out}] = c \text{ and}$$

$$(35)$$

$$\mathsf{EXPNO}_{\mathrm{out}}[r_{\mathrm{out}}] = \mathsf{EXPNO}_{\mathrm{in}}[r_{\mathrm{in}}] \tag{36}$$

is zero.

ii. if $EVTSENT_{in}[r_{in}] > 0$, then the total number of rows N_{out} where

$$CCD_ID_{out}[r_{out}] = c \text{ and } (37)$$

$$\mathsf{EXPNO}_{\mathrm{out}}[r_{\mathrm{out}}] = \mathsf{EXPNO}_{\mathrm{in}}[r_{\mathrm{in}}] \tag{38}$$

is equal to $EVTSENT_{in}[r_{in}]$.

Here r_{in} and r_{out} are rows in HDUs h_{in} and h_{out} of the infile and outfile, respectively. The value of $EXPNO_{\min}$ is specified as follows. If

$$DATAMODE_{out} = FAINT or$$
(39)

$$DATAMODE_{out} = FAINT_BIAS or$$
 (40)

$$DATAMODE_{out} = GRADED \text{ or}$$
 (41)

$$DATAMODE_{out} = VFAINT, \qquad (42)$$

then $EXPNO_{min} = 3$. If

$$DATAMODE_{out} = CC33_FAINT or$$
(43)

$$DATAMODE_{out} = CC33_GRADED, \qquad (44)$$

then $EXPNO_{min} = 4$.

If there are no valid EXPNOs for CCD_ID c, then acis_build_chip_gti exits with an error message.

(b) GTI START and STOP times:

Each consecutive set of valid EXPNOs from $EXPNO_i$ to $EXPNO_i$ for $CCD_ID c$ is a GTI for the CCD. The GTI START and STOP times associated with this set of EXPNOs is given by the following expressions.

i. If

$$DATAMODE_{out} = FAINT or$$
(45)

$$DATAMODE_{out} = FAINT_BIAS \text{ or}$$
 (46)

$$DATAMODE_{out} = GRADED \text{ or}$$
(47)

$$DATAMODE_{out} = VFAINT, (48)$$

then

$$START = TIME_{in}[r_{in,i}] - TIMEPIXR_{in} \times TIMEDEL_{in} - FLSHTIME_{in} and$$
 (49)

$$STOP = TIME_{in}[r_{in,j}] + (1 - TIMEPIXR_{in}) \times TIMEDEL_{in},$$
(50)

where the row $r_{in,i}$ is the one where

$$CCD_{ID_{in}}[r_{in,i}] = c \text{ and } (51)$$

$$\mathsf{EXPNO}_{in}[r_{in,i}] = \mathsf{EXPNO}_i \tag{52}$$

and the row $r_{\mathrm{in},j}$ is the one where

$$CCD_ID_{in}[r_{in,j}] = c \text{ and}$$
(53)

$$\mathsf{EXPNO}_{in}[r_{in,j}] = \mathsf{EXPNO}_j. \tag{54}$$

Note that the GTIs include the $\mathtt{FLSHTIME}_{\mathrm{in}}$ because \mathtt{DTCOR} includes it. ii. If

$$DATAMODE_{out} = CC33_FAINT or$$
 (55)

$$DATAMODE_{out} = CC33_GRADED$$
(56)

and if the parameter $calc_ctimes = yes$, then

$$START = TIME_{in}[r_{in,i}] - TIMEPIXR_{in} \times TIMEDEL_{in} and$$
(57)

$$STOP = TIME_{in}[r_{in,j}] + (1 - TIMEPIXR_{in}) \times TIMEDEL_{in}.$$
(58)

iii. If

$$DATAMODE_{out} = CC33_FAINT or$$
(59)

$$DATAMODE_{out} = CC33_GRADED$$
(60)

and if the parameter $calc_cc_times = no$, then

$$\begin{aligned} \text{START} &= \text{TIME}_{\text{in}}[r_{\text{in},i}] - \text{TIMEPIXR}_{\text{in}} \times \text{TIMEDEL}_{\text{in}} + \\ & (\text{CHIPY_TARG}[\text{TIME}_{\text{in}}[r_{\text{in},i}]] + 1028) \times 0.00285 \text{ and} \end{aligned} \tag{61} \\ \text{STOP} &= \text{TIME}_{\text{in}}[r_{\text{in},j}] + (1 - \text{TIMEPIXR}_{\text{in}}) \times \text{TIMEDEL}_{\text{in}} + \\ & (\text{CHIPY_TARG}[\text{TIME}_{\text{in}}[r_{\text{in},j}]] + 1028) \times 0.00285, \end{aligned} \tag{62}$$

where CHIPY_TARG[TIME_{in}[$r_{in,i}$]] and CHIPY_TARG[TIME_{in}[$r_{in,j}$]] are the CHIPY locations of the sky coordinates RA_TARG_{out} and DEC_TARG_{out} at the times TIME_{in}[$r_{in,i}$] and TIME_{in}[$r_{in,j}$], respectively. The aspfile, geompar, and pixlib are used to determine the values of CHIPY_TARG[TIME_{in}[$r_{in,i}$]] and CHIPY_TARG[TIME_{in}[$r_{in,j}$]].

(c) ONTIMEc:

The value of ONTIMEc is given by

$$ONTIME c = \sum_{k} (STOP_k - START_k), \qquad (63)$$

where \mathtt{START}_k and \mathtt{STOP}_k are the \mathtt{START} and \mathtt{STOP} times, respectively, of the k^{th} GTI for $\mathtt{CCD_ID} c$.

(d) LIVTIMEc:

The value of LIVTIMEc is given by

$$LIVTIME c = ONTIME c \times DTCOR.$$
(64)

(e) EXPOSURc:

The value of EXPOSURc is given by

$$\mathsf{EXPOSUR}c = \mathsf{ONTIME}c \times \mathsf{DTCOR} \tag{65}$$

(i.e. EXPOSURc = LIVTIMEc).

5. Aim-point CCD:

If the CCD_ID $c = c_{aim}$, where c_{aim} is the CCD_ID of the CCD at the aim point, then

$$ONTIME = ONTIMEc, (66)$$

LIVETIME = LIVTIMEc, and(67)

$$\mathsf{EXPOSURE} = \mathsf{EXPOSURc.} \tag{68}$$

6. Write output:

- (a) The HDU h_{out} of the outfile is modified to include the keywords
 - DTCOR,
 - EXPOSURE,
 - EXPOSURc (one such keyword for each valid CCD_ID),
 - LIVETIME,
 - LIVTIMEc (one such keyword for each valid CCD_ID),
 - ONTIME, and
 - ONTIMEc (one such keyword for each valid CCD_ID),
- (b) The **outfile** is modified to include a GTI HDU for each valid CCD. Each one of these HDUs includes a binary table with the columns
 - $\bullet\,$ START and
 - STOP.

These columns include one row for each GTI for the CCD.

1.6 TBD

- Should there be error checking for the parameter geompar?
- Are there DATAMODEs other than CC33_FAINT, CC33_GRADED, FAINT, FAINT_BIAS, GRADED, and VFAINT that should be included?
- How is the aim-point CCD_ID determined? DETNAM? SIM_Z? (X, Y) = (4096.5, 4096.5)?
- Are the keywords DTCOR, EXPOSURE, EXPOSURE, LIVETIME, LIVTIME, ONTIME, and ONTIME written by acis_build_chip_gti, or are they written after the acis_build_chip_gti GTIs are merged with the mtl GTIs?
- Is there a systematic offset for the mission-timeline GTIs with respect to the GTIs produced by acis_build_chip_gti?
- How can the mission-timeline GTIs be merged with the acis_build_chip_gti GTIs so that they are aligned with the frame boundaries?