

MIT Kavli Institute

Chandra X-Ray Center

MEMORANDUM

July 15, 2014

To: Jonathan McDowell, SDS Group Leader

From: Glenn E. Allen, SDS Subject: acis_build_chip_gti

Revision: 2.1

 $\mathbf{URL:} \qquad \text{http://space.mit.edu/CXC/docs/docs.html} \# gti$

File: /inconceivable/d0/SDS/specs/acis_build_chip_gti/acis_build_chip_gti_2.1.tex

1 acis_build_chip_gti

1.1 Description

For an ACIS CCD, a good-time interval (GTI) is a continuous set of frames during which the detector operated nominally. The GTIs can differ from one CCD to another if more than one is used for an observation.

1.2 Input

- 1. A Level 1 exposure-statistics file (acis*stat1.fits)
- 2. A Level 1 event-data file (acis*evt1.fits) (This file is also the output file.)
- 3. A parameter-block file (acisf*pbk0.fits)
- 4. One or more Level 1 aspect-solution file(s) (pcad*asol1.fits)
- 5. A parameter file that includes a list of the CALDB files used by pixlib
- 6. The CCD_ID of the aim-point CCD

1.3 Output

The input Level 1 event-data file is modified to include

- several exposure-related keywords and
- one GTI HDU for each valid CCD.

1.4 Parameters

- 1. infile,f,a, "",,,"Name of input exposure-statistics file"
- 2. outfile,f,a, "",,, "Name of event-data file to be modified"
- 3. pbkfile,f,a,"",,,"Name of input parameter-block file"
- 4. aspfile,f,a,"",,,"Name(s) of input aspect-solution file(s)"
- 5. geompar,f,h, "geom",,, "Name of input pixlib parameter file"
- 6. nominalchip,s,h, "default", default|0|1|2|3|4|5|6|7|8|9,, "Aim-point CCD_ID"
- 7. verbose,i,h,0,...
- 8. mode,s,h,"ql",,,

1.5 Processing

- 1. Error checking:
 - (a) infile:
 - i. If the infile does not exist, then acis_build_chip_gti exits with an error message.
 - ii. If the infile exists, but the file permissions do not allow it to be read, then acis_build_chip_gti exits with an error message.
 - iii. If the infile does not have an HDU $h_{\rm in}$ with the keyword

$$CONTENT = EXPSTATS, (1)$$

then acis_build_chip_gti exits with an error message.

- iv. If HDU $h_{\rm in}$ does not include the header keywords
 - FLSHTIME,
 - TIMEDEL, and
 - TIMEPIXR,

then $acis_build_chip_gti$ exits with an error message. Hereafter the values of these keywords are referred to as $FLSHTIME_{in}$, $TIMEDEL_{in}$, and $TIMEPIXR_{in}$, respectively.

- v. If HDU $h_{\rm in}$ does not include a binary table with the columns
 - CCD_ID,
 - EVTSENT,
 - EXPNO, and
 - TIME,

then acis_build_chip_gti exits with an error message. Hereafter these columns are referred to as CCD_ID_{in}, EVTSENT_{in}, EXPNO_{in}, and TIME_{in}, respectively.

- (b) outfile:
 - i. If the outfile does not exist, then acis_build_chip_gti exits with an error message.
 - ii. If the outfile exists, but the file permissions do not allow it to be read and modified, then acis_build_chip_gti exits with an error message.
 - iii. If the outfile does not have an HDU h_{out} with the keyword

$$CONTENT = EVT1, (2)$$

then acis_build_chip_gti exits with an error message.

iv. If HDU $h_{\rm out}$ of the outfile does not include the header keyword

• DATAMODE,

then $acis_build_chip_gti$ exits with an error message. Hereafter the value of this keyword is referred to as DATAMODE $_{out}$.

v. If

$$DATAMODE_{out} \neq CC33_FAINT and$$
 (3)

$$DATAMODE_{out} \neq CC33_GRADED and$$
 (4)

$$DATAMODE_{out} \neq FAINT$$
and (5)

$$DATAMODE_{out} \neq FAINT_BIAS$$
and (6)

$$\mathtt{DATAMODE}_{\mathrm{out}} \ \neq \ \mathrm{GRADED} \ \mathrm{and} \ \eqno(7)$$

$$\mathtt{DATAMODE}_{\mathrm{out}} \ \neq \ \mathrm{VFAINT}, \tag{8}$$

then acis_build_chip_gti exits with an error message.

vi. If

$$DATAMODE_{out} = CC33_FAINT or$$
 (9)

$$DATAMODE_{out} = CC33_GRADED,$$
 (10)

and if HDU $h_{\rm out}$ does not include the keywords RA_TARGand DEC_TARG, then acis_build_chip_gti exits with an error message. Hereafter the values of these keywords are referred to as RA_TARG_{out}, and DEC_TARG_{out}, respectively.

vii. If

$$DATAMODE_{out} = CC33_FAINT or$$
 (11)

$$DATAMODE_{out} = CC33_GRADED,$$
 (12)

if HDU h_{out} includes the keyword HDUCLAS3, and if HDUCLAS3 = CC_CORRECTED, then $t_{\text{adj}} = \text{yes}$. Otherwise, $t_{\text{adj}} = \text{no}$.

viii. If HDU $h_{\rm out}$ does not include a binary table with the columns

- CCD_ID and
- EXPNO,

then $acis_build_chip_gti$ exits with an error message. Hereafter these columns are referred to as CCD_ID_{out} and $EXPNO_{out}$, respectively.

(c) pbkfile:

- i. If the pbkfile does not exist, then acis_build_chip_gti exits with an error message.
- ii. If the pbkfile exists, but the file permissions do not allow it to be read, then acis_build_chip_gti exits with an error message.
- iii. If the pbkfile does not have an HDU $h_{\rm pbk}$ with the keyword

$$CONTENT = PBK, (13)$$

then acis_build_chip_gti exits with an error message.

(d) aspfile:

- i. If the aspfile does not exist, then acis_build_chip_gti exits with an error message.
- ii. If the aspfile exists, but the file permissions do not allow it to be read, then acis_build_chip_gti exits with an error message.

iii. If the aspfile does not have an HDU $h_{\rm asp}$ that has the keyword

$$CONTENT = ASPSOL, (14)$$

then acis_build_chip_gti exits with an error message.

- iv. If HDU $h_{\rm asp}$ does not include a binary table with the columns
 - DEC.
 - DTHETA,
 - DY,
 - DZ,
 - RA,
 - ROLL, and
 - TIME,

then acis_build_chip_gti exits with an error message.

- (e) nominalchip:
 - i. The parameter string nominalchip is converted to contain only lower case letters.
 - ii. If

nominalchip
$$\neq$$
default and(15)nominalchip \neq 0 and(16)nominalchip \neq 1 and(17)nominalchip \neq 2 and(18)nominalchip \neq 3 and(19)nominalchip \neq 4 and(20)nominalchip \neq 5 and(21)nominalchip \neq 6 and(22)nominalchip \neq 7 and(23)nominalchip \neq 8 and(24)nominalchip \neq 9,(25)

then acis_build_chip_gti exits with an error message.

iii. If

then $c_{\rm aim}$ is the integer equivalent of the string nominalchip.

iv. If nominal chip = default, then the value of c_{aim} is determined from the input data.

2. DTCOR:

The value of DTCOR, which does not depend on the CCD_ID, is given by the following expressions.

(a) If

$$DATAMODE_{out} = FAINT or$$
 (36)

$$DATAMODE_{out} = FAINT_BIAS or$$
 (37)

$$DATAMODE_{out} = GRADED or$$
 (38)

$$DATAMODE_{out} = VFAINT, (39)$$

then

$$\mathtt{DTCOR} = \frac{\mathtt{TIMEDEL_{in}} - 0.04104}{\mathtt{TIMEDEL_{in}} + \mathtt{FLSHTIME_{in}}}. \tag{40}$$

DTCOR includes FLSHTIMEin because it is included in the GTIs.

(b) If

$$DATAMODE_{out} = CC33_FAINT or$$
 (41)

$$DATAMODE_{out} = CC33_GRADED, (42)$$

then

$$DTCOR = 0.99609375 \tag{43}$$

(i.e. 510/512).

3. $EXPNO_{min}$:

The value of EXPNO_{min} is determined as follows.

(a) If

$$DATAMODE_{out} = FAINT or (44)$$

$$DATAMODE_{out} = FAINT_BIAS or$$
 (45)

$$DATAMODE_{out} = GRADED or$$
 (46)

$$DATAMODE_{out} = VFAINT, (47)$$

then $\mathtt{EXPNO}_{\min} = 3$.

(b) If

$$DATAMODE_{out} = CC33_FAINT or$$
 (48)

$$DATAMODE_{out} = CC33_GRADED, (49)$$

then $EXPNO_{min} = 4$.

4. Valid CCD_IDs:

The set of valid CCD_IDs is identified. Here, CCD_ID c is defined as valid if there are one or more rows (i.e. frames) in HDU $h_{\rm in}$ of the infile where CCD_ID $_{\rm in} = c$. If there are no valid CCD_IDs, then acis_build_chip_gti exits with an error message. If $c_{\rm aim}$ is not a valid CCD_ID, then acis_build_chip_gti exits with an error message.

5. For each valid CCD_ID:

The following steps are performed for each valid CCD_ID c.

(a) Identify the valid EXPNOs:

Tf

$$CCD_{ID_{in}}[r_{in}] = c, (50)$$

$$EXPNO_{in}[r_{in}] \geq EXPNO_{min}, \tag{51}$$

$$EVTSENT_{in}[r_{in}] > 0$$
, and (52)

$$EVTSENT_{in}[r_{in}] = N_{out}, (53)$$

then $\mathtt{EXPNO}_{in}[r_{in}]$ is valid. Here N_{out} , which is greater than or equal to zero, is the number of rows (i.e. events) where

$$CCD_ID_{out}[r_{out}] = c \text{ and}$$
 (54)

$$EXPNO_{out}[r_{out}] = EXPNO_{in}[r_{in}]$$
 (55)

and r_{in} and r_{out} are rows in HDUs h_{in} and h_{out} of the infile and outfile, respectively. If there are no valid EXPNOs for CCD_ID c, then acis_build_chip_gti exits with an error message.

(b) GTI START and STOP times:

Each consecutive set of one or more valid EXPNOs from EXPNO_i to EXPNO_j for CCD_ID c is a GTI for the CCD. The GTI START and STOP times associated with this set of EXPNOs is given by the following expressions.

i. If

$$DATAMODE_{out} = FAINT or$$
 (56)

$$DATAMODE_{out} = FAINT_BIAS or$$
 (57)

$$DATAMODE_{out} = GRADED or (58)$$

$$DATAMODE_{out} = VFAINT, (59)$$

then

START =
$$TIME_{in}[r_{in,i}] - TIMEPIXR_{in} \times TIMEDEL_{in} - FLSHTIME_{in}$$
and (60)

$$STOP = TIME_{in}[r_{in,j}] + (1 - TIMEPIXR_{in}) \times TIMEDEL_{in},$$
(61)

where the row $r_{\text{in},i}$ is the one where

$$CCD_ID_{in}[r_{in,i}] = c \text{ and}$$
 (62)

$$EXPNO_{in}[r_{in,i}] = EXPNO_i (63)$$

and the row $r_{\text{in},j}$ is the one where

$$CCD_ID_{in}[r_{in,j}] = c \text{ and}$$
 (64)

$$EXPNO_{in}[r_{in,j}] = EXPNO_j. (65)$$

The GTIs include the ${\tt FLSHTIME}_{in}$ because DTCOR includes it.

ii. If

$$DATAMODE_{out} = CC33_FAINT or$$
 (66)

$$\mathtt{DATAMODE}_{\mathrm{out}} = \mathtt{CC33_GRADED} \tag{67}$$

and if $t_{\text{adj}} = \text{yes}$, then

$$START = TIME_{in}[r_{in,i}] - TIMEPIXR_{in} \times TIMEDEL_{in} \text{ and}$$
 (68)

$$STOP = TIME_{in}[r_{in,j}] + (1 - TIMEPIXR_{in}) \times TIMEDEL_{in}.$$
 (69)

$$DATAMODE_{out} = CC33_FAINT or$$
 (70)

$$DATAMODE_{out} = CC33_GRADED$$
 (71)

and if $t_{adj} = no$, then

STOP =
$$TIME_{in}[r_{in,j}] + (1 - TIMEPIXR_{in}) \times TIMEDEL_{in} +$$

 $(CHIPY_TARG[TIME_{in}[r_{in,j}]] + 1028) \times 0.00285,$ (73)

where $\mathtt{CHIPY_TARG}[\mathtt{TIME}_{\mathrm{in}}[r_{\mathrm{in},i}]]$ and $\mathtt{CHIPY_TARG}[\mathtt{TIME}_{\mathrm{in}}[r_{\mathrm{in},j}]]$ are the \mathtt{CHIPY} locations of the sky coordinates RA_TARGout and $\mathtt{DEC_TARG}_{\mathrm{out}}$ at the times $\mathtt{TIME}_{\mathrm{in}}[r_{\mathrm{in},i}]$ and $\mathtt{TIME}_{\mathrm{in}}[r_{\mathrm{in},j}]$, respectively. The aspfile, geompar, and pixlib are used to determine the values of $\mathtt{CHIPY_TARG}[\mathtt{TIME}_{\mathrm{in}}[r_{\mathrm{in},i}]]$ and $\mathtt{CHIPY_TARG}[\mathtt{TIME}_{\mathrm{in}}[r_{\mathrm{in},i}]]$.

(c) ONTIMEc:

The value of ONTIMEc is given by

$$\mathtt{ONTIME} c = \sum_k \left(\mathtt{STOP}_k - \mathtt{START}_k \right), \tag{74}$$

where \mathtt{START}_k and \mathtt{STOP}_k are the \mathtt{START} and \mathtt{STOP} times, respectively, of the k^{th} GTI for CCD_ID c.

(d) LIVTIMEc:

The value of LIVTIMEc is given by

$$LIVTIMEc = ONTIMEc \times DTCOR. \tag{75}$$

(e) EXPOSURc:

The value of EXPOSURc is given by

$$EXPOSURc = ONTIMEc \times DTCOR \tag{76}$$

(i.e. EXPOSURc = LIVTIMEc).

6. Aim-point CCD:

If the CCD_ID $c = c_{\text{aim}}$, then

$$ONTIME = ONTIME c, (77)$$

$$LIVETIME = LIVTIMEc, and$$
 (78)

$$EXPOSURE = EXPOSURc. (79)$$

7. Write output:

- (a) The HDU h_{out} of the outfile is modified to include the keywords
 - DTCOR,
 - EXPOSURE.
 - EXPOSURc (one such keyword for each valid CCD_ID),
 - LIVETIME,
 - LIVTIMEc (one such keyword for each valid CCD_ID),
 - ONTIME, and

- ONTIMEc (one such keyword for each valid CCD_ID),
- (b) The outfile is modified to include a GTI HDU for each valid CCD. Each one of these HDUs includes a binary table with the columns
 - START and
 - STOP.

These columns include one row for each GTI for the CCD.

1.6 TBD

- Are there DATAMODEs other than CC33_FAINT, CC33_GRADED, FAINT, FAINT_BIAS, GRADED, and VFAINT that should be included?
- How is the aim-point CCD_ID determined? DETNAM? SIM_Z? (X,Y) = (4096.5, 4096.5)?
- Is there a systematic offset for the mission-timeline GTIs with respect to the GTIs produced by acis_build_chip_gti?
- How can the mission-timeline GTIs be merged with the acis_build_chip_gti GTIs so that they are aligned with the frame boundaries?