

MIT Kavli Institute

Chandra X-Ray Center

MEMORANDUM

April 28, 2017

To: Jonathan McDowell, SDS Group Leader

From: Glenn E. Allen, SDS

Subject: acis_process_events spec

Revision: 4.17

URL: http://space.mit.edu/CXC/docs/docs.html#ape

File: /nfs/inconceivable/d0/sds/specs/acis_process_events/ape_spec_4.17.tex

1 acis_process_events

This spec, which is incomplete, describes some of processing steps for continuous-clocking mode data.

- 1.1 Description
- 1.2 Input
- 1.3 Output
- 1.4 Parameters
- 1.5 Processing

1.5.1 Error checking

The following steps are performed once prior to the processing of the data for each input ACIS event.

- 1. obsfile:
 - (a) Validation:
 - i. If

$$obsfile = NONE,$$
 (1)

then obsfile is changed to "none".

ii. Existence:

If

obsfile
$$\neq$$
 none (2)

and the obsfile does not exist, then obsfile is changed to "none" and acis_process_-events produces a warning message.

iii. Permission:

If

obsfile
$$\neq$$
 none (3)

and the file permissions do not allow the obsfile to be read, then obsfile is changed to "none" and acis_process_events produces a warning message.

iv. OBS_MODE:

If

obsfile
$$\neq$$
 none (4)

then

- A. If the obsfile does not include the keyword OBS_MODE, then OBS_MODE_{in} is set to "none".
- B. If the obsfile includes the keyword OBS_MODE then OBS_MODE in is set to OBS_MODE.
- C. If

$$OBS_MODE_{in} = POINTING, (5)$$

then OBS_MODE_{in} is set to "pointing".

D. If

$$OBS_MODE_{in} = SECONDARY, (6)$$

then $\mathtt{OBS_MODE_{in}}$ is set to "secondary".

E. If

$$OBS_MODE_{in} \neq none and$$
 (7)

$$OBS_MODE_{in} \neq pointing and$$
 (8)

$$OBS_MODE_{in} \neq secondary, \tag{9}$$

then $\mathtt{OBS_MODE}_{\mathrm{in}}$ is set to "none" and $\mathtt{acis_process_events}$ produces a warning message.

2. acaofffile:

(a) Validation:

If

$$OBS_MODE_{in} = pointing,$$
 (10)

then

i. If

$$acaofffile = NONE, (11)$$

then acaofffile is set to "none."

ii. Setting:

If

$$acaofffile = none, (12)$$

then acis_process_events produces a warning message.

iii. Existence:

If

$$acaofffile \neq none (13)$$

and the acaofffile does not exist, then acis_process_events produces a warning and acaofffile is set to "none."

iv. Permission:

If the acaofffile exists and the file permissions do not allow it to be read, then acis_process_events produces a warning message and acaofffile is set to "none."

v. CONTENT:

If the acaofffile does not have an HDU h_{acaoff} with the keyword

$$CONTENT = ASPSOL or$$
 (14)

$$CONTENT = OBCSOL, (15)$$

then acis_process_events produces a warning message and acaofffile is set to "none."

vi. Keyword:

If HDU $h_{\rm acaoff}$ of the acaofffile does not include the keyword TSTART, then acis_process_events produces a warning message and acaofffile is set to "none."

vii. Columns:

If HDU $h_{\rm acaoff}$ of the acaofffile does not include the columns TIME, RA, DEC, and ROLL then acis_process_events produces a warning message and acaofffile is set to "none." Hereafter, these columns are referred to as TIME_{acaoff}, RA_{acaoff}, DEC_{acaoff}, and ROLL_{acaoff}.

viii. Sequential:

If more than one valid acaofffile is specified and the the values TSTART are not in increasing order, then acis_process_events produces a warning message and acaofffile is set to "none."

3. alignmentfile:

(a) Validation:

If

$$OBS_MODE_{in} = pointing,$$
 (16)

then

i. If

$${\tt alignmentfile} = {\tt NONE}, \tag{17}$$

then alignmentfile is changed to "none."

ii. Setting:

If

$$alignmentfile = none,$$
 (18)

then acis_process_events produces a warning message.

iii. Existence:

If

$$alignmentfile \neq none \tag{19}$$

and the alignmentfile does not exist, then acis_process_events produces a warning message and alignmentfile is set to "none.".

iv. Permission:

If the alignmentfile exists and the file permissions do not allow it to be read, then acis_process_events produces a warning message and alignmentfile is set to "none.".

v CONTENT:

If the alignmentfile does not have an HDU $h_{\text{alignment}}$ with the keyword

$$CONTENT = ASPSOL or (20)$$

$$CONTENT = OBCSOL, (21)$$

then acis_process_events produces a warning message and alignmentfile is set to "none.".

vi. Keyword:

If HDU $h_{\text{alignment}}$ of the alignmentfile does not include the keyword TSTART, then acisprocess_events produces a warning message and alignmentfile is set to "none.".

vii. Columns:

If HDU $h_{\text{alignment}}$ of the alignmentfile does not include the columns DY, DZ, and DTHETA then acis_process_events produces a warning message and alignmentfile is set to "none.".

viii. Sequential:

If more than one valid alignmentfile is specified and the values TSTART are not in increasing order, then acis_process_events produces a warning message and alignmentfile is set to "none.".

4. infile:

(a) Existence:

If the infile does not exist, then acis_process_events exits with an error message.

(b) Permission:

If the infile exists and the file permissions do not allow it to be read, then acis_process_events exits with an error message.

(c) Validation:

i. OBS_MODE:

If OBS_MODE_{in} = none and HDU h_{in} of the infile includes the keyword OBS_MODE, then A. OBS_MODE_{in} is set to OBS_MODE.

B. If

$$OBS_MODE_{in} = POINTING,$$
 (22)

then OBS_MODE_{in} is set to "pointing".

C. If

$$OBS_MODE_{in} = SECONDARY, (23)$$

then OBS_MODE_{in} is set to "secondary".

D. If

$$OBS_MODE_{in} \neq \text{none and}$$
 (24)

$$OBS_MODE_{in} \neq pointing and$$
 (25)

$$OBS_MODE_{in} \neq secondary,$$
 (26)

then OBS_MODE_{in} is set to "none" and acis_process_events produces a warning message.

ii. DATAMODE:

The DATAMODE is read from the HDU $h_{\rm in}$ keyword of the same name. If the HDU $h_{\rm in}$ does not include the keyword DATAMODE or if

DATAMODE
$$\neq$$
 CC33_FAINT and (27)

DATAMODE
$$\neq$$
 CC33_GRADED and (28)

$$DATAMODE \neq FAINT and$$
 (29)

DATAMODE
$$\neq$$
 FAINT_BIAS and (30)

$$DATAMODE \neq GRADED \text{ and}$$
 (31)

$$DATAMODE \neq VFAINT, \tag{32}$$

then $acis_process_events$ exits with an error message. Hereafter, the value of this keyword is referred to as DATAMODE_{in}.

iii. CONTENT:

If the infile does not have an HDU h_{in} with the keyword

$$CONTENT = EVT0 or (33)$$

$$CONTENT = EVT1 \text{ or} (34)$$

$$CONTENT = TGEVT1 \text{ or}$$
 (35)

$$CONTENT = EVT2, (36)$$

then $acis_process_events$ exits with an error message. Hereafter, the value of this keyword is referred to as $CONTENT_{in}$.

iv. TIME:

If

$$DATAMODE_{in} = CC33_FAINT or$$
 (37)

$$DATAMODE_{in} = CC33_GRADED$$
 (38)

and HDU $h_{\rm in}$ of the infile does not include the column TIME, then acis_process_events exits with an error message. Hereafter, this column is referred to as TIME_{in}.

v. TIME_RO:

If

$$DATAMODE_{in} = CC33_FAINT or$$
 (39)

$$DATAMODE_{in} = CC33_GRADED$$
 (40)

and

$$CONTENT_{in} = EVT1 \text{ or}$$
 (41)

$$CONTENT_{in} = TGEVT1 \text{ or}$$
 (42)

$$CONTENT_{in} = EVT2 (43)$$

and HDU $h_{\rm in}$ of the infile does not include the column TIME_RO, then acis_process_events exits with an error message. Hereafter, this column is referred to as TIME_RO_{in}.

vi. CCD_ID:

A. If

$$CONTENT_{in} = EVTO (44)$$

and HDU $h_{\rm in}$ of the infile does not include the keyword CCD_ID, then acis_process_events exits with an error message. Hereafter, this keyword is referred to as CCD_ID_{in}.

B. If

$$CONTENT_{in} = EVT1 \text{ or} (45)$$

$$CONTENT_{in} = TGEVT1 \text{ or}$$
 (46)

$$CONTENT_{in} = EVT2$$
 (47)

and HDU $h_{\rm in}$ of the infile does not include the column CCD_ID, then acis_process_events exits with an error message. Hereafter, this column is referred to as CCD_ID_{in}.

vii. CCDX:

A. If

$$CONTENT_{in} = EVTO (48)$$

and HDU $h_{\rm in}$ of the infile does not include the column CCDX and does not include the column CHIPX, then acis_process_events exits with an error message. Hereafter, these columns are referred to as CCDX_{in} and CHIPX_{in}, respectively.

viii. CHIPX:

A. If

$$CONTENT_{in} = EVT1 \text{ or}$$
 (49)

$$CONTENT_{in} = TGEVT1 \text{ or}$$
 (50)

$$CONTENT_{in} = EVT2$$
 (51)

and HDU $h_{\rm in}$ of the infile does not include the column CHIPX, then acis_process_events exits with an error message. Hereafter, this column is referred to as CHIPX_{in}.

ix. CCDY:

A. If

$$CONTENT_{in} = EVT0 (52)$$

and

$$DATAMODE_{in} = FAINT or (53)$$

$$DATAMODE_{in} = FAINT_BIAS or$$
 (54)

$$DATAMODE_{in} = GRADED \text{ or}$$
 (55)

$$DATAMODE_{in} = VFAINT$$
 (56)

and HDU $h_{\rm in}$ of the infile does not include the column CCDY and does not include the column CHIPY, then acis_process_events exits with an error message. Hereafter, these columns are referred to as CCDY_{in} and CHIPY_{in}, respectively.

x. TROW:

A. If

$$CONTENT_{in} = EVTO (57)$$

and

$$DATAMODE_{in} = CC33_FAINT or$$
 (58)

$$DATAMODE_{in} = CC33_GRADED$$
 (59)

and HDU $h_{\rm in}$ of the infile does not include the column TROW and does not include the column CHIPY, then acis_process_events exits with an error message. Hereafter, these columns are referred to as TROW_{in} and CHIPY_{in}, respectively.

xi. CHIPY:

A. If

$$CONTENT_{in} = EVT1 \text{ or} (60)$$

$$CONTENT_{in} = TGEVT1 \text{ or}$$
 (61)

$$CONTENT_{in} = EVT2 (62)$$

and HDU $h_{\rm in}$ of the infile does not include the column CHIPY, then acis_process_events exits with an error message. Hereafter, this column is referred to as CHIPY_{in}.

xii. TIMEDEL:

If

$$DATAMODE_{in} = CC33_FAINT or$$
 (63)

$$DATAMODE_{in} = CC33_GRADED$$
 (64)

and HDU $h_{\rm in}$ of the infile does not include the keyword TIMEDEL, then acis_process_events exits with an error message. Hereafter this keyword is referred to as TIMEDEL_{in}.

xiii. RA_TARG, DEC_TARG, RA_NOM, DEC_NOM, RA_PNT, DEC_PNT, CHIPY_TG, and TG_M: If

$$OBS_MODE_{in} = pointing$$
 (65)

and

$$DATAMODE_{in} = CC33_FAINT or$$
 (66)

$$DATAMODE_{in} = CC33_GRADED, (67)$$

then

A. RA_TARG, DEC_TARG, RA_NOM, DEC_NOM, RA_PNT, DEC_PNT:

If HDU $h_{\rm in}$ of the infile does not include the keywords RA_TARG, DEC_TARG, RA_NOM, DEC_NOM, RA_PNT, and DEC_PNT, then acis_process_events exits with an error message. Hereafter these keywords are referred to as RA_TARG_{in}, DEC_TARG_{in}, RA_NOM_{in}, DEC_NOM_{in}, RA_PNT_{in}, and DEC_PNT_{in}, respectively.

B. CHIPY_TG and TG_M:

If

$$CONTENT_{in} = TGEVT1 (68)$$

and HDU $h_{\rm in}$ of the infile does not include the columns CHIPY_TGand TG_M, then acis_process_events exits with an error message. Hereafter these columns are referred to as CHIPY_TG_{in} and TG_M_{in}, respectively.

xiv. TGAINCOR:

If HDU $h_{\rm in}$ of the infile does not include the keyword TGAINCOR, then this keyword is set to zero (i.e. FALSE). Hereafter, this keyword is referred to as TGAINCOR_{in}.

5. stop:

(a) Lowercase:

The parameter string is converted to contain only lower case letters.

(b) Validation:

i. Setting:

If

$$stop \neq none and$$
 (69)

$$stop \neq chip and$$
 (70)

$$stop \neq tdet and$$
 (71)

$$stop \neq det and$$
 (72)

$$stop \neq tan and \tag{73}$$

$$stop \neq sky,$$
 (74)

then stop is changed to "none" and acis_process_events produces a warning message.

ii. OBS_MODE:

If

$$OBS_MODE_{in} \neq pointing and$$
 (75)

$$stop \neq none and$$
 (76)

$$stop \neq chip and$$
 (77)

$$stop \neq tdet, \tag{78}$$

then stop is changed to "tdet" and acis_process_events produces a warning message.

iii. acaofffile:

If

$$OBS_MODE_{in} = pointing and$$
 (79)

$$acaofffile = none and$$
 (80)

$$stop \neq none and$$
 (81)

$$stop \neq chip and$$
 (82)

$$stop \neq tdet,$$
 (83)

then acis_process_events produces a warning message and stop is changed to "none."

iv. alignmentfile:

If

$$OBS_MODE_{in} = pointing and$$
 (84)

$$alignmentfile = none and$$
 (85)

$$stop \neq none and$$
 (86)

$$stop \neq chip and$$
 (87)

$$stop \neq tdet,$$
 (88)

then acis_process_events produces a warning message and stop is changed to "none."

6. doevtgrade:

(a) Lowercase:

The parameter string is converted to contain only lower case letters.

- (b) Validation:
 - i. Setting:

If

doevtgrade
$$\neq$$
 yes and (89)

doevtgrade
$$\neq$$
 no, (90)

then acis_process_events exits with an error message.

ii. Timed mode:

Tf

$$DATAMODE_{in} = FAINT or (91)$$

$$DATAMODE_{in} = FAINT_BIAS or (92)$$

$$DATAMODE_{in} = GRADED \text{ or}$$
 (93)

$$DATAMODE_{in} = VFAINT (94)$$

and HDU $h_{\rm in}$ of the infile does not include the column PHAS, then doevtgrade is changed to "no" and acis_process_events produces a warning message.

iii. Continuous clocking mode:

If

$$DATAMODE_{in} = CC33_GRADED or$$
 (95)

$$DATAMODE_{in} = GRADED$$
 (96)

and HDU $h_{\rm in}$ of the infile does not include the column PHA_RO, then doevtgrade is changed to "no" and acis_process_events produces a warning message.

7. apply_cti:

(a) Lowercase:

The parameter string is converted to contain only lower case letters.

- (b) Validation:
 - i. Setting:

If

$$apply_cti \neq yes and$$
 (97)

$$apply_cti \neq no,$$
 (98)

then acis_process_events exits with an error message.

ii. Timed mode:

If

$$DATAMODE_{in} = FAINT or$$
 (99)

$$DATAMODE_{in} = FAINT_BIAS or$$
 (100)

$$DATAMODE_{in} = GRADED or$$
 (101)

$$DATAMODE_{in} = VFAINT$$
 (102)

and

$$apply_cti = yes$$
 (103)

and the infile does not include the columns CCD_ID, CHIPX, CHIPY, and PHAS, then $apply_cti$ is changed to "no" and $acis_process_events$ produces a warning message.

iii. Continuous clocking mode:

If

$$DATAMODE_{in} = CC33_GRADED or$$
 (104)

$$DATAMODE_{in} = GRADED (105)$$

and

$$apply_cti = yes$$
 (106)

and the infile does not include the columns CCD_ID, CHIPX, CHIPY, PHA_RO, and FLTGRADE, then apply_cti is changed to "no" and acis_process_events produces a warning message.

iv. doevtgrade:

Tf

$$apply_cti = yes and$$
 (107)

$$doevtgrade = no, (108)$$

then apply_cti is changed to "no" and acis_process_events produces a warning message.

8. apply_tgain:

(a) Lowercase:

The parameter string is converted to contain only lower case letters.

- (b) Validation:
 - i. Setting:

If

$$apply_tgain \neq yes and$$
 (109)

$$apply_tgain \neq no,$$
 (110)

then acis_process_events exits with an error message.

ii. TIME:

If

$$apply_tgain = yes$$
 (111)

and the infile does not include the column TIME, then apply_tgain is changed to "no" and acis_process_events produces a warning message.

iii. doevtgrade:

If

$$apply_tgain = yes and$$
 (112)

$$doevtgrade = no, (113)$$

then apply_tgain is changed to "no" and acis_process_events produces a warning message.

9. gradefile:

- (a) Validation:
 - i. If

$$gradefile = NONE,$$
 (114)

then gradefile is changed to "none."

ii. Existence:

If

$$gradefile \neq none$$
 (115)

and the gradefile does not exist, then gradefile is changed to "none" and acis_process_events produces a warning message.

iii. Permission:

If

$$gradefile \neq none$$
 (116)

and the file permissions do not allow it to be read, then gradefile is changed to "none" and acis_process_events produces a warning message.

iv. HDU:

If the gradefile does not have an HDU that includes the keyword CBD10001 and where the keyword includes $\mathtt{DATAMODE_{in}}$, then $\mathtt{gradefile}$ is changed to "none" and $\mathtt{acis_process_events}$ produces a warning message. Hereafter this HDU is referred to as $h_{\mathtt{grade}}$.

v. Columns:

If

$$gradefile \neq none$$
 (117)

and HDU $h_{\rm grade}$ of the gradefile does not include the columns FLTGRADE and GRADE, then gradefile is changed to "none" and acis_process_events produces a warning message. Hereafter these columns are referred to as FLTGRADE_{grade} and GRADE_{grade}, respectively.

10. grade_image_file:

(a) Validation:

If

$$grade_image_file \neq caldb and$$
 (118)

$$grade_image_file \neq CALDB and$$
 (119)

$$apply_cti = yes (120)$$

and

$$DATAMODE = CC33_GRADED or$$
 (121)

$$DATAMODE = GRADED, (122)$$

then

i. Existence:

If the grade_image_file does not exist, then apply_cti is changed to "no" and acis_process_events produces a warning message.

ii. Permission:

If the grade_image_file exists and the file permissions do not allow it to be read, then apply_cti is changed to "no" and acis_process_events produces a warning message.

iii. CONTENT:

If the grade_image_file does not have one or more HDU h_{grdimg} with the keyword

$$CONTENT = GRADED_CTI, (123)$$

then apply_cti is changed to "no" and acis_process_events produces a warning message.

iv. Columns:

If HDU $h_{\rm grdimg}$ of the grade_image_file does not include the columns FLTGRADE, GRDIMG, and ESCL, then apply_cti is changed to "no" and acis_process_events produces a warning message.

11. badpixfile:

(a) Validation:

i. If

$$badpixfile = NONE, (124)$$

then badpixfile is changed to "none."

ii. Existence:

If

$$badpixfile \neq none (125)$$

and the badpixfile does not exist, then badpixfile is changed to "none" and acis_process_events produces a warning message.

iii. Permission:

If

$$badpixfile \neq none (126)$$

and the file permissions do not allow it to be read, then badpixfile is changed to "none" and acis_process_events produces a warning message.

iv. CONTENT:

If

$$badpixfile \neq none (127)$$

and the badpixfile does not have one or more HDU h_{badpix} with the keyword

$$CONTENT = BADPIX or (128)$$

$$CONTENT = CDB_ACIS_BADPIX, (129)$$

then badpixfile is changed to "none" and acis_process_events produces a warning message.

v. Keyword:

If

$$badpixfile \neq none (130)$$

and the HDU(s) h_{badpix} of the badpixfile do not include the keyword CCD_ID, then badpixfile is changed to "none" and acis_process_events produces a warning message. Hereafter this keyword is referred to as CCD_ID_{badpix}.

vi. Columns:

If

$$badpixfile \neq none (131)$$

and the HDU(s) $h_{\rm badpix}$ of the badpixfile do not include the columns CHIPX, CHIPY, TIME, TIME_STOP, and STATUS, then badpixfile is changed to "none" and acis_process_events produces a warning message. Hereafter these columns are referred to as CHIPX_{badpix}, CHIPY_{badpix}, TIME_STOP_{badpix}, and STATUS_{badpix}, respectively.

12. ctifile:

(a) Validation:

Ιf

ctifile
$$\neq$$
 caldb, (132)

ctifile
$$\neq$$
 CALDB, and (133)

$$apply_cti = yes,$$
 (134)

then

i. Existence:

If the ctifile does not exist, then apply_cti is changed to "no" and acis_process_events produces a warning message.

ii. Permission:

If the ctifile exists and the file permissions do not allow it to be read, then apply_cti is changed to "no" and acis_process_events produces a warning message.

iii. CONTENT:

If the ctifile does not have one or more HDU h_{cti} with the keyword

$$CONTENT = CDB_ACIS_CTI,$$
 (135)

then apply_cti is changed to "no" and acis_process_events produces a warning message.

iv. Columns:

If HDU h_{cti} of the ctifile does not include the columns CCD_ID, CHIPX_LO, CHIPX_HI, CHIPY_LO, CHIPY_HI, PHA, VOLUME_X, VOLUME_Y, FRCTRLX, FRCTRLY, TCTIX, and TCTIY, then apply_cti is changed to "no" and acis_process_events produces a warning message.

13. tgainfile:

(a) Validation:

If

$$tgainfile \neq caldb, (136)$$

$$tgainfile \neq CALDB, and$$
 (137)

$$apply_tgain = yes,$$
 (138)

then

i. Existence:

If the tgainfile does not exist, then apply_tgain is changed to "no" and acis_process_events produces a warning message.

ii. Permission:

If the tgainfile exists and the file permissions do not allow it to be read, then apply_tgain is changed to "no" and acis_process_events produces a warning message.

iii. CONTENT:

If the tgainfile does not have one or more HDU h_{tgain} with the keyword

$$CONTENT = CDB_ACIS_TGAIN, (139)$$

then apply_tgain is changed to "no" and acis_process_events produces a warning message.

iv. Columns:

If HDU $h_{\rm tgain}$ of the tgainfile does not include the columns CCD_ID, CHIPX_LO, CHIPX_HI, CHIPY_LO, CHIPY_HI, NPOINTS, PHA, DELTPHA1, and DELTPHA2, then apply_tgain is changed to "no" and acis_process_events produces a warning message.

v. Keywords:

If HDU h_{tgain} of the tgainfile does not include the keywords EPOCH1 and EPOCH2, then apply_tgain is changed to "no" and acis_process_events produces a warning message.

14. mtlfile:

(a) Lowercase:

If

$$mtlfile = NONE,$$
 (140)

then change mtlfile to "none".

(b) Validation:

If

$$mtlfile \neq none and$$
 (141)

$$apply_cti = yes,$$
 (142)

then

i. Existence:

If the mtlfile does not exist, then mtlfile is changed to "none" and acis_process_events produces a warning message.

ii. Permission:

If the mtlfile exists and the file permissions do not allow it to be read, then mtlfile is changed to "none" and acis_process_events produces a warning message.

iii. CONTENT:

If the mtlfile does not have one or more HDU $h_{
m mtl}$ with the keyword

$$CONTENT = mtl, (143)$$

then mtlfile is changed to "none" and acis_process_events produces a warning message.

iv. Columns:

If HDU h_{mtl} of the mtlfile does not include the columns TIME and FP_TEMP, then mtlfile is changed to "none" and acis_process_events produces a warning message.

15. clobber:

(a) Lowercase:

The parameter string is converted to contain only lower case letters.

- (b) Validation:
 - i. Setting:

If

clobber
$$\neq$$
 yes and (144)

clobber
$$\neq$$
 no, (145)

then clobber is changed to "no" and acis_process_events produces a warning message.

ii. Permission:

If

$$clobber = yes (146)$$

and the outfile exists and the file permissions of the outfile do not allow it to be overwritten, then acis_process_events exits with an error message.

iii. Don't overwrite:

If

$$clobber = no (147)$$

and the outfile exists, then acis_process_events exits with an error message.

$16. \ \mathtt{pix_adj:}$

(a) Lowercase:

The parameter string is converted to contain only lower case letters.

(b) Validation:

i. Setting:

If

$$pix_adj \neq centroid and$$
 (148)

$$pix_adj \neq edser and$$
 (149)

$$pix_adj \neq none and$$
 (150)

$$pix_adj \neq randomize,$$
 (151)

then pix_adj is changed to "none" and acis_process_events produces a warning message.

ii. OBS_MODE:

If

$$OBS_MODE_{in} \neq pointing and$$
 (152)

$$pix_adj \neq none,$$
 (153)

then pix_adj is changed to "none" and acis_process_events produces a warning message. iii. acaofffile:

If

$$pix_adj \neq none$$
 (154)

and

$$DATAMODE_{in} = CC33_FAINT or$$
 (155)

$$DATAMODE_{in} = CC33_GRADED$$
 (156)

and

$$acaofffile = none, (157)$$

then pix_adj is changed to "none" and acis_process_events produces a warning message. iv. alignmentfile:

If

$$pix_adj \neq none$$
 (158)

and

$$DATAMODE_{in} = CC33_FAINT or$$
 (159)

$$DATAMODE_{in} = CC33_GRADED$$
 (160)

and

$$alignmentfile = none,$$
 (161)

then pix_adj is changed to "none" and acis_process_events produces a warning message. v. stop:

If

$$pix_adj = centroid or$$
 (162)

$$pix_adj = edser or$$
 (163)

$$pix_adj = randomize$$
 (164)

and

$$stop \neq sky,$$
 (165)

then pix_adj is changed to "none" and acis_process_events produces a warning message.

vi. PHAS:

If

$$pix_adj = centroid$$
 (166)

and the infile does not include the column PHAS, then pix_adj is changed to "none" and acis_process_events produces a warning message.

vii. FLTGRADE:

If

$$pix_adj = edser$$
 (167)

and

$$DATAMODE = CC33_GRADED or$$
 (168)

$$DATAMODE = GRADED (169)$$

and the infile does not include the column FLTGRADE, then pix_adj is changed to "none" and acis_process_events produces a warning message.

17. subpixfile:

(a) If

$$pix_adj = edser, (170)$$

then

i. Existence:

If the subpixfile does not exist, then pix_adj is changed to "none" and acis_process_events produces a warning message.

ii. Permission:

If the subpixfile exists and the file permissions do not allow it to be read, then pix_adj is changed to "none" and acis_process_events produces a warning message.

iii. Validation:

A. CONTENT:

If the subpixfile does not have one or more HDU h_{subpix} with the keyword

$$CONTENT = AXAF_SUBPIX, (171)$$

then pix_adj is changed to "none" and acis_process_events produces a warning message.

B. Keyword:

If the HDUs h_{subpix} of the subpixfile do not include the keyword CCD_ID, then pix_adj is changed to "none" and acis_process_events produces a warning message.

C. Columns:

If the HDUs h_{subpix} of the subpixfile do not include binary tables with the columns FLTGRADE, NPOINTS, ENERGY, CHIPX_OFFSET, and CHIPY_OFFSET, then pix_adj is changed to "none" and acis_process_events produces a warning message. Hereafter these columns are referred to as FLTGRADE_{subpix}, NPOINTS_{subpix}, ENERGY_{subpix}, CHIPX_OFFSET_{subpix}, and CHIPY_OFFSET_{subpix}, respectively.

1.5.2 Initializations

1. Focal-point CCD:

If

$$OBS_MODE_{in} = pointing$$
 (172)

and

$$DATAMODE_{in} = CC33_FAINT or$$
 (173)

$$DATAMODE_{in} = CC33_GRADED, (174)$$

then the values of $RA_PNT_{\rm in}$ and $DEC_PNT_{\rm in}$ are used to determine the CCD_ID associated with the focal point. Hereafter this value is referred to as $CCD_ID_{\rm focus}$.*

2. $TIME_{min}$ and $TIME_{max}$:

If

$$OBS_MODE_{in} = pointing and$$
 (175)

acaofffile
$$\neq$$
 none and (176)

alignmentfile
$$\neq$$
 none, (177)

then the acaofffile data are processed to determine the earliest and latest times for which there is aspect information:

$$TIME_{min} = min(TIME_{acaoff})$$
 and (178)

$$TIME_{max} = max (TIME_{acaoff}). (179)$$

3. CHIPX_TARGacaoff, med, CHIPY_TARGacaoff, med:

If

$$OBS_MODE_{in} = pointing$$
 (180)

and

$$DATAMODE_{in} = CC33_FAINT or$$
 (181)

$$DATAMODE_{in} = CC33_GRADED$$
 (182)

and

acaofffile
$$\neq$$
 none and (183)

alignmentfile
$$\neq$$
 none, (184)

then the values of CHIPX_TARG_{acaoff} and CHIPY_TARG_{acaoff} are computed from the values of RA_TARG and DEC_TARG using the orientation of the telescope (i.e. RA, DEC, and ROLL) and the orientation of the SIM (i.e. DY, DZ, and DTHETA) and the TIMEs in the acaofffile. The values of CHIPX_TARG_{acaoff} and CHIPY_TARG_{acaoff} are processed to obtain the median values:

$$\mathtt{CHIPX_TARG}_{\mathrm{acaoff},\mathrm{med}} \quad = \quad \mathrm{median}(\mathtt{CHIPX_TARG}_{\mathrm{acaoff}}) \ \mathrm{and} \tag{185}$$

$$CHIPY_TARG_{acaoff,med} = median(CHIPY_TARG_{acaoff}).$$
 (186)

^{*}The focal point is the location associated with the optical axis in the absence of dither. This location should not be confused with the aim point, which is the location illuminated by an undithered point source provided that the source is not offset from the target location.

1.5.3 Loop over events

The following steps are performed, in sequence, for each event.

1. STATUS:

(a) Exists:

If HDU $h_{\rm in}$ of the infile includes a 32-bit column named STATUS, then

- i. The values of the bits for an event are read from the infile.
- ii. The value of STATUS[k] is set to zero for bits k = 1-5, 14, 16-19, and 23 (of 0-31), bits that can be set by acis_process_events.
- iii. If

$$doevtgrade = yes, (187)$$

then the value of STATUS[20], the other bit that can be set by acis_process_events, is set to zero.

(b) Does not exist:

If HDU $h_{\rm in}$ does not include a 32-bit column named STATUS, then

- i. A set of 32 bits are allocated for the event.
- ii. The values of the 32 bits are initialized to zero.

2. EXPNO:

- (a) Read:
 - i. If HDU $h_{\rm in}$ of the infile includes the EXPNO, hereafter referred to as EXPNO_{in}, then

$$EXPNO = EXPNO_{in}. (188)$$

ii. If HDU $h_{\rm in}$ of the infile does not include the EXPNO, then

$$EXPNO = NULL. (189)$$

(b) Validation:

If

$$EXPNO \neq NULL \tag{190}$$

and

$$EXPNO < 0 \text{ or} \tag{191}$$

$$EXPNO \geq 10^8, \tag{192}$$

then acis_process_events produces a warning upon completion with a count of the total number of events for which equation 190 and either equation 191 or 192 is true. These conditions should not occur.

$3. \text{ CCD_ID}:$

(a) Read:

The value of CCD_ID for an event is given by CCD_ID_{in}.

(b) Validation:

If

$$CCD_ID < 0 \text{ or} \tag{193}$$

$$CCD_ID > 9, (194)$$

then acis_process_events exits with an error message because CCD_ID-dependent computations could fail if the value of CCD_ID is unphysical.

4. CHIPX:

- (a) Read:
 - i. If the infile includes the column CHIPX, then the value of CHIPX for an event is given by

$$CHIPX = CHIPX_{in}. (195)$$

ii. If the infile does not include the column CHIPX, then the value of CHIPX for an event is given by

$$CHIPX = CCDX_{in} + 1. (196)$$

- 5. CHIPX_ADJ:
 - (a) Initialize:

$$CHIPX_ADJ = CHIPX. (197)$$

- (b) Validation:
 - i. Unphysical:

If

$$CHIPX_ADJ < 1, (198)$$

then

$$CHIPX_ADJ = 1. (199)$$

If

$$CHIPX_ADJ > 1024, \tag{200}$$

then

$$CHIPX_ADJ = 1024. (201)$$

ii. Unexpected:

If

$$CHIPX_ADJ = 1 \text{ or}$$
 (202)

$$\mathtt{CHIPX_ADJ} \quad = \quad 1024, \tag{203}$$

then acis_process_events sets STATUS bit 0 (of 0-31) to one and increments a counter for the number of unexpected CHIPX values. These values should not occur.

6. NODE_ID:

(a) Calculate:

The NODE_ID of an event is given by

NODE_ID =
$$\operatorname{int}\left(\frac{\operatorname{CHIPX_ADJ} - 1}{256}\right)$$
, (204)

where "int" means the integer portion of (i.e. truncate or round down) the quantity in parentheses.

7. CHIPY:

- (a) Read:
 - i. If the infile includes the column CHIPY, then the value of CHIPY for an event is given by

$$CHIPY = CHIPY_{in}. (205)$$

ii. If the infile does not include the column CHIPY and

$$DATAMODE_{in} = FAINT or (206)$$

$$DATAMODE_{in} = FAINT_BIAS or$$
 (207)

$$DATAMODE_{in} = GRADED \text{ or}$$
 (208)

$$\mathtt{DATAMODE_{in}} = \mathtt{VFAINT}, \tag{209}$$

then the value of CHIPY for an event is given by

$$CHIPY = CCDY_{in} + 1. (210)$$

iii. If the infile does not include the column CHIPY and

$$DATAMODE_{in} = CC33_FAINT or$$
 (211)

$$DATAMODE_{in} = CC33_GRADED, (212)$$

then the value of CHIPY for an event is given by

$$CHIPY = TROW_{in} + 1. (213)$$

- 8. CHIPY_ADJ:
 - (a) Initialize:

$$CHIPY_ADJ = CHIPY. (214)$$

- (b) Validation:
 - i. Unphysical:

A. Minimum:

If

$$CHIPY_ADJ < 1, (215)$$

then

$$CHIPY_ADJ = 1 (216)$$

and acis_process_events sets STATUS bit 0 (of 0-31) to one and increments a counter for the number of unexpected CHIPY values. These values should not occur.

B. Timed exposure mode maximum:

Ιf

$$DATAMODE_{in} = FAINT or$$
 (217)

$$DATAMODE_{in} = FAINT_BIAS or$$
 (218)

$$DATAMODE_{in} = GRADED or$$
 (219)

$$DATAMODE_{in} = VFAINT (220)$$

and

$$CHIPY_ADJ > 1024,$$
 (221)

then

$$CHIPY_ADJ = 1024 \tag{222}$$

and acis_process_events sets STATUS bit 0 (of 0-31) to one and increments a counter for the number of unexpected CHIPY values. These values should not occur.

C. Continuous-clocking mode maximum:

Tf

$$DATAMODE_{in} = CC33_FAINT or$$
 (223)

$$DATAMODE_{in} = CC33_GRADED$$
 (224)

and

$$CHIPY_ADJ > 512, \tag{225}$$

then

$$CHIPY_ADJ = 512 (226)$$

and $acis_process_events$ sets STATUS bit 0 (of 0-31) to one and increments a counter for the number of unexpected CHIPY values. These values should not occur.

ii. Unexpected:

A. VFAINT:

 If

$$DATAMODE_{in} = VFAINT$$
 (227)

and

$$CHIPY_ADJ = 2 \text{ or}$$
 (228)

$$CHIPY_ADJ = 1023, (229)$$

then acis_process_events sets STATUS bit 0 (of 0-31) to one and increments a counter for the number of unexpected CHIPY values. These values should not occur.

$9. \text{ TIME_RO}$:

(a) Timed exposure mode:

If

$$DATAMODE = FAINT or (230)$$

$$DATAMODE = FAINT_BIAS or (231)$$

$$DATAMODE = GRADED or (232)$$

$$DATAMODE = VFAINT, (233)$$

then

$$TIME_RO = NaN. (234)$$

(b) Continuous-clocking mode:

If

$$DATAMODE_{in} = CC33_FAINT or$$
 (235)

$$DATAMODE_{in} = CC33_GRADED, (236)$$

then

i. Read:

A. Level 0:

If

$$CONTENT_{in} = EVTO, (237)$$

then the value of TIME_RO for an event is given by TIME_{in}.

B. Level 1, 1.5, or 2:

If

$$CONTENT_{in} = EVT1 \text{ or}$$
 (238)

$$CONTENT_{in} = TGEVT1 \text{ or}$$
 (239)

$$CONTENT_{in} = EVT2 (240)$$

and

$$TIME_RO_{in} > 0, (241)$$

then

$$TIME_RO = TIME_RO_{in}. (242)$$

If

$$CONTENT_{in} = EVT1 \text{ or}$$
 (243)

$$CONTENT_{in} = TGEVT1 \text{ or}$$
 (244)

$$CONTENT_{in} = EVT2 (245)$$

and

$$TIME_RO_{in} = 0, (246)$$

then

$$TIME_{RO} = TIME_{in}. (247)$$

ii. Validation:

If

$$\mathsf{TIME_RO} \quad < \quad 0 \text{ or} \tag{248}$$

$$TIME_RO \geq 3 \times 10^9, \tag{249}$$

then acis_process_events produces a warning upon completion with a count of the total number of events for which either equation 248 or 249 is true. These conditions should not occur.

10. CHIPX_TARG_{evt}, CHIPY_TARG_{evt}, and CHIPY_TARG_{eff}:

The coordinate CHIPY_TARGeff is used to compute the coordinates X, Y, and SKY_1D.

(a) Approximate:

If

$$DATAMODE_{in} = CC33_FAINT or$$
 (250)

$$DATAMODE_{in} = CC33_GRADED$$
 (251)

and

acaofffile
$$\neq$$
 none, (252)

then:

i. Initial values:

The values of CHIPX_TARG_{evt} and CHIPY_TARG_{evt} are computed from the values of RA_TARG and DEC_TARG using the value of CCD_ID_{focus} and using the orientation of the telescope (i.e. RA, DEC, and ROLL) and the orientation of the SIM (i.e. DY, DZ, and DTHETA) at the time given by TIME_RO - (CHIPY_TARG_{acaoff,med} + 1028) \times TIMEDEL. The value of CHIPY_TARG_{evt} can be negative.

ii. ACIS-I0 or -I2:

If

$$CCD_ID_{focus} = 0 \text{ or}$$
 (253)

$$CCD_ID_{focus} = 2, (254)$$

then

A. If

$$CCD_ID = 0 \text{ or} \tag{255}$$

$$CCD_ID = 2, (256)$$

then

$$CHIPY_TARG_{eff} = CHIPY_TARG_{evt}. (257)$$

B. If

$$CCD_ID = 1 \text{ or}$$
 (258)

$$CCD_ID = 3, (259)$$

then

$$CHIPY_TARG_{eff} = 512 - (CHIPY_TARG_{evt} - CHIPY_TARG_{acaoff,med}).$$
 (260)

C. If

$$CCD_ID \geq 4, \tag{261}$$

then

$$CHIPY_TARG_{eff} = 512 - (CHIPX_TARG_{evt} - CHIPX_TARG_{acaoff.med}).$$
 (262)

iii. ACIS-I1 or -I3:

Τf

$$CCD_ID_{focus} = 1 \text{ or}$$
 (263)

$$CCD_ID_{focus} = 3, (264)$$

then

A. If

$$CCD_ID = 0 \text{ or} \tag{265}$$

$$CCD_ID = 2, (266)$$

then

$${\tt CHIPY_TARG_{eff}} = 512 - ({\tt CHIPY_TARG_{evt} - CHIPY_TARG_{acaoff,med}}). \tag{267}$$

B. If

$$CCD_ID = 1 \text{ or}$$
 (268)

$$CCD_ID = 3, (269)$$

then

$$CHIPY_TARG_{eff} = CHIPY_TARG_{evt}. (270)$$

C. If

$$CCD_ID \geq 4, \tag{271}$$

then

$$CHIPY_TARG_{eff} = 512 + (CHIPX_TARG_{evt} - CHIPX_TARG_{acaoff,med}).$$
 (272)

iv. ACIS-S:

 If

$$CCD_ID_{focus} \ge 4, \tag{273}$$

then

A. If

$$CCD_ID = 0 \text{ or} \tag{274}$$

$$CCD_ID = 2, (275)$$

then

$$\texttt{CHIPY_TARG}_{eff} = 512 + (\texttt{CHIPX_TARG}_{evt} - \texttt{CHIPX_TARG}_{acaoff,med}). \tag{276}$$

B. If

$$CCD_ID = 1 \text{ or}$$
 (277)

$$CCD_ID = 3, (278)$$

then

$$\mathtt{CHIPY_TARG}_{\mathrm{eff}} = 512 - (\mathtt{CHIPX_TARG}_{\mathrm{evt}} - \mathtt{CHIPX_TARG}_{\mathrm{acaoff},\mathrm{med}}). \tag{279}$$

C. If

$$CCD_ID \ge 4, \tag{280}$$

then

$$CHIPY_TARG_{eff} = CHIPY_TARG_{evt}. (281)$$

(b) Validation:

If

$$CHIPY_TARG_{eff} < -256 \text{ or}$$
 (282)

$$\mathtt{CHIPY_TARG}_{\mathrm{eff}} \ \geq \ 1280, \tag{283}$$

then acis_process_events produces a warning message.

11. TG_M:

(a) Continuous-clocking mode with gratings:

Τf

$$OBS_MODE_{in} = pointing$$
 (284)

and

$$DATAMODE_{in} = CC33_FAINT or$$
 (285)

$$DATAMODE_{in} = CC33_GRADED$$
 (286)

and

$$CONTENT_{in} = TGEVT1,$$
 (287)

then

i. Read:

The value of TG_M for an event is given by $TG_M_{\mathrm{in}}.$

ii. Validation:

A. If

$$TG_M < -99, (288)$$

then

$$TG_M = -99 \tag{289}$$

and acis_process_events produces a warning upon completion with a count of the total number of events for which this condition is true. These values should not occur.

B. If

$$TG_M > 99, (290)$$

then

$$TG_M = 99 (291)$$

and acis_process_events produces a warning upon completion with a count of the total number of events for which this condition is true. These values should not occur.

12. CHIPY_TG:

(a) Continuous-clocking mode with gratings:

If

$$OBS_MODE_{in} = pointing$$
 (292)

and

$$DATAMODE_{in} = CC33_FAINT or$$
 (293)

$$DATAMODE_{in} = CC33_GRADED$$
 (294)

and

$$CONTENT_{in} = TGEVT1, (295)$$

then

i. Read:

The value of CHIPY_TG for an event is given by CHIPY_TG_{in}.

ii. Validation:

A. If

$$TG_M > -99 \text{ and}$$
 (296)

$$TG_M < 99 \text{ and} \tag{297}$$

$$CHIPY_TG \neq NaN$$
 (298)

and

$$CHIPY_TG \leq 0 \text{ or}$$
 (299)

$$CHIPY_TG \ge 1025,$$
 (300)

then acis_process_events exits with an error message because CHIPY_TG-dependent computations could fail if the value of CHIPY_TG is unphysical.

B. If

$$TG_M > -99 \text{ and}$$
 (301)

$$TG_M < 99 \text{ and}$$
 (302)

CHIPY_TG
$$\neq$$
 NaN and (303)

$$CHIPY_TG < 1, (304)$$

then

$$CHIPY_TG = 1. (305)$$

C. If

$$TG_M > -99 \text{ and} \tag{306}$$

$$TG_M < 99 \text{ and}$$
 (307)

CHIPY_TG
$$\neq$$
 NaN and (308)

$$CHIPY_TG > 1024,$$
 (309)

then

$$CHIPY_TG = 1024.$$
 (310)

13. TIME and CHIPY_ADJ:

For continuous-clocking mode observations, the value of CHIPY_ADJ is used to compute the TIME, pulse heights, and the coordinates TDETX, TDETY, DETX, and DETY.

(a) Calculate:

i. Timed exposure mode:

If

$$DATAMODE_{in} = FAINT or$$
 (311)

$$DATAMODE_{in} = FAINT_BIAS or$$
 (312)

$$DATAMODE_{in} = GRADED or$$
 (313)

$$DATAMODE_{in} = VFAINT, (314)$$

then

$$TIME = TIME_{in}. (315)$$

ii. Continuous-clocking mode:

If

$$DATAMODE_{in} = CC33_FAINT or$$
 (316)

$$DATAMODE_{in} = CC33_GRADED$$
 (317)

then

A. Set

$$CHIPY_ADJ = 512 \text{ and}$$
 (318)

$$TIME' = TIME_RO - (CHIPY_ADJ + 1028) \times TIMEDEL.$$
 (319)

B. If

acaofffile
$$\neq$$
 none, (320)

then

$$CHIPY_ADJ' = CHIPY_TARG_{eff}$$
and (321)

$$TIME' = TIME_RO - (CHIPY_ADJ' + 1028) \times TIMEDEL,$$
 (322)

and CHIPY_ADJ is computed from the values of RA_TARG and DEC_TARG using the orientation of the telescope (i.e. RA, DEC, and ROLL) and the orientation of the SIM (i.e. DY, DZ, and DTHETA) at the time TIME'. At this step, the value of CHIPY_ADJ can be negative.

C. If

$$CONTENT_{in} = TGEVT1 \text{ and}$$
 (323)

$$TG_M > -99 \text{ and} \tag{324}$$

$$TG_M < 99 \text{ and}$$
 (325)

$$CHIPY_TG \neq NaN, \tag{326}$$

then

$$CHIPY_ADJ = CHIPY_TG.$$
 (327)

D. If $\label{eq:content_in} \mbox{Content}_{\rm in} \ = \ \mbox{TGEVT1}$ and

 $TG_M = -99 \text{ or} \tag{329}$

(328)

 $TG_M = 99,$ (330)

then

 $CHIPY_ADJ = 512. (331)$

E. If

acaofffile \neq none (332)

and

 $TIME' < TIME_{min} or (333)$

 $TIME' \geq TIME_{max},$ (334)

then

 $CHIPY_ADJ = 512. (335)$

F. If

acaofffile \neq none (336)

and

 $TIME' < TIME_{min} \text{ or}$ (337)

 $TIME' \geq TIME_{max},$ (338)

and

 $CCD_ID_{focus} = 0 \text{ or}$ (339)

 $CCD_ID_{focus} = 2 (340)$

and

 $CCD_ID = 0 \text{ or} (341)$

 $CCD_ID = 2, (342)$

then

 $CHIPY_ADJ = CHIPY_TARG_{acaoff,med}.$ (343)

G. If

acaofffile \neq none (344)

and

 $\mathtt{TIME'} < \mathtt{TIME}_{\min} \ \mathrm{or} \ (345)$

 $\mathtt{TIME'} \geq \mathtt{TIME}_{\mathrm{max}},$ (346)

and

$$CCD_ID_{focus} = 1 \text{ or} (347)$$

$$CCD_ID_{focus} = 3 (348)$$

and

$$CCD_ID = 1 \text{ or} \tag{349}$$

$$CCD_ID = 3, (350)$$

then

$$CHIPY_ADJ = CHIPY_TARG_{acaoff,med}.$$
 (351)

H. If

$$\texttt{acaofffile} \neq \text{none} \tag{352}$$

and

$$TIME' < TIME_{min} \text{ or}$$
 (353)

$$TIME' \geq TIME_{max},$$
 (354)

and

$$CCD_ID_{focus} \ge 4 \text{ and}$$
 (355)

$$CCD_ID \ge 4, \tag{356}$$

then

$$CHIPY_ADJ = CHIPY_TARG_{acaoff,med}.$$
 (357)

I. If

$$acaofffile = none (358)$$

and

$$CONTENT_{in} \neq TGEVT1,$$
 (359)

then

$$CHIPY_ADJ = 512.$$
 (360)

J. If

$$CCD_ID_{focus} \leq 3 \text{ and}$$
 (361)

(362)

$$CCD_ID \geq 4,$$

then

$$CHIPY_ADJ = 512. (363)$$

K. If

$$CCD_ID_{focus} \ge 4 \text{ and}$$
 (364)

$$CCD_ID \leq 3, \tag{365}$$

then

$$CHIPY_ADJ = 512.$$
 (366)

L. If

$$OBS_MODE_{in} = secondary,$$
 (367)

then

$$CHIPY_ADJ = 512. (368)$$

M. If

$$CHIPY_ADJ < 0.5 \text{ or}$$
 (369)

$$CHIPY_ADJ \geq 1024.5 \tag{370}$$

then

$$CHIPY_ADJ = 512. (371)$$

N. Set

$$TIME = TIME_RO - (CHIPY_ADJ + 1028) \times TIMEDEL.$$
 (372)

In continuous-clocking mode, the coordinate CHIPY_ADJ is used to compute the time, the pulse heights, and the coordinates (except for X, Y, and SKY_1D).

- (b) Validation:
 - i. If

$$TIME < 0 \text{ or} \tag{373}$$

$$TIME \geq 3 \times 10^9, \tag{374}$$

then acis_process_events produces a warning upon completion with a count of the total number of events for which one or the other of these conditions is true. These values should not occur.

ii. If

$$CHIPY_ADJ < 0.5 \text{ or} \tag{375}$$

$$CHIPY_ADJ > 1024.5,$$
 (376)

then acis_process_events exits with an error message because CHIPY_ADJ-dependent computations could fail if the value of CHIPY_ADJ is unphysical.

14. Bad pixel:

(a) If

$$badpixfile \neq none (377)$$

and the badpixfile includes a valid HDU h_{badpix} where CCD_ID_{badpix} = CCD_ID, then the HDU h_{badpix} is searched as follows to determine if the event should have one or more STATUS bits set to one.

i. If $\mathtt{DATAMODE_{in}} = \mathtt{FAINT}$, $\mathtt{DATAMODE_{in}} = \mathtt{FAINT_BIAS}$, $\mathtt{DATAMODE_{in}} = \mathtt{GRADED}$, or $\mathtt{DATAMODE_{in}} = \mathtt{VFAINT}$ and there are one or more row r in HDU $h_{\mathtt{badpix}}$ where

$$CHIPX \ge CHIPX_{badpix,r}[0] \text{ and } (378)$$

$$CHIPX \leq CHIPX_{badpix,r}[1] \text{ and}$$
 (379)

$$CHIPY \ge CHIPY_{badpix,r}[0] \text{ and}$$
 (380)

$$CHIPY \leq CHIPY_{badpix,r}[1] \text{ and}$$
 (381)

$$TIME \ge TIME_{badpix,r}$$
 and (382)

$$TIME < TIME_STOP_{badpix,r}$$
 (383)

and

$$STATUS_{badpix,r}[5] = 1 \text{ or}$$
 (384)

$$STATUS_{\text{badpix},r}[6] = 1 \text{ or}$$
 (385)

$$STATUS_{\text{badpix},r}[9] = 1, (386)$$

then

$$STATUS[0] = 1 \tag{387}$$

for the event. Here CCD_ID_{badpix} is the value of the keyword CCD_ID in HDU h_{badpix} of the badpixfile, CHIPX_{badpix,r}[0] and CHIPX_{badpix,r}[1] are the first and second values in the vector column named CHIPX of row r of HDU h_{badpix} of the badpixfile, and TIME_STOP, respectively, of row r of HDU h_{badpix} , of the badpixfile.

ii. If DATAMODE_{in} = CC33_FAINT or DATAMODE_{in} = CC33_GRADED and there are one or more row r in HDU h_{badpix} where

$$CHIPX \geq CHIPX_{badpix,r}[0] \text{ and } (388)$$

$$CHIPX \leq CHIPX_{badpix,r}[1] \text{ and } (389)$$

$$TIME \geq TIME_{badpix,r} \text{ and}$$
 (390)

$$TIME < TIME_STOP_{badpix,r}$$
 (391)

and

$$STATUS_{\text{badpix},r}[5] = 1 \text{ or}$$
 (392)

$$STATUS_{\text{badpix},r}[6] = 1 \text{ or}$$
 (393)

$$STATUS_{\text{badpix},r}[9] = 1, (394)$$

then

$$STATUS[0] = 1 \tag{395}$$

for the event. Here CCD_ID_{badpix} is the value of the keyword CCD_ID in HDU h_{badpix} of the badpixfile, CHIPX_{badpix,r}[0] and CHIPX_{badpix,r}[1] are the first and second values in the vector column named CHIPX of row r of HDU h_{badpix} of the badpixfile, and TIME_stop, respectively, and TIME_stop, respectively, of row r of HDU h_{badpix} of the badpixfile.

iii. If $\mathtt{DATAMODE_{in}} = \mathtt{FAINT}$, $\mathtt{DATAMODE_{in}} = \mathtt{FAINT_BIAS}$, $\mathtt{DATAMODE_{in}} = \mathtt{GRADED}$, or $\mathtt{DATAMODE_{in}} = \mathtt{VFAINT}$ and there are one or more row r in HDU $h_{\mathtt{badpix}}$ where

$$CHIPX \ge CHIPX_{badpix,r}[0] \text{ and } (396)$$

$$CHIPX \leq CHIPX_{badpix,r}[1] \text{ and } (397)$$

$$CHIPY \ge CHIPY_{badpix,r}[0] \text{ and } (398)$$

$$CHIPY \leq CHIPY_{\text{badpix},r}[1] \text{ and } (399)$$

$$TIME \ge TIME_{badpix,r}$$
 and (400)

$$TIME < TIME_STOP_{badpix,r}$$
 (401)

and

$$STATUS_{badpix,r}[0] = 1 \text{ or}$$
 (402)

$$STATUS_{\text{badpix},r}[1] = 1 \text{ or}$$
 (403)

$$STATUS_{badpix,r}[7] = 1 \text{ or}$$
 (404)

then

$$STATUS[4] = 1 \tag{411}$$

(410)

for the event.

iv. If $\mathtt{DATAMODE_{in}} = \mathtt{CC33_FAINT}$ or $\mathtt{DATAMODE_{in}} = \mathtt{CC33_GRADED}$ and there are one or more row r in HDU $h_{\mathtt{badpix}}$ where

 $STATUS_{badpix,r}[17]$

$$CHIPX \geq CHIPX_{badpix,r}[0] \text{ and}$$
 (412)

$$CHIPX \leq CHIPX_{badpix,r}[1] \text{ and } (413)$$

$$TIME \ge TIME_{badpix,r}$$
 and (414)

$$TIME < TIME_STOP_{badpix,r}$$
 (415)

and

$$STATUS_{badpix,r}[0] = 1 \text{ or}$$
 (416)

$$STATUS_{\text{badpix},r}[1] = 1 \text{ or}$$
 (417)

$$STATUS_{badpix,r}[7] = 1 \text{ or}$$
 (418)

$$STATUS_{badpix,r}[11] = 1 \text{ or}$$
 (419)

$$STATUS_{badpix,r}[12] = 1 \text{ or}$$
 (420)

$$STATUS_{badpix,r}[13] = 1 \text{ or}$$
 (421)

$$STATUS_{badpix,r}[14] = 1 \text{ or}$$
 (422)

$$STATUS_{badpix,r}[16] = 1 \text{ or}$$
 (423)

$$STATUS_{\text{badpix},r}[17] = 1, \tag{424}$$

then

$$STATUS[4] = 1 \tag{425}$$

for the event.

v. If $\mathtt{DATAMODE_{in}} = \mathtt{FAINT}$, $\mathtt{DATAMODE_{in}} = \mathtt{FAINT_BIAS}$, $\mathtt{DATAMODE_{in}} = \mathtt{GRADED}$, or $\mathtt{DATAMODE_{in}} = \mathtt{VFAINT}$ and there are one or more row r in HDU $h_{\mathtt{badpix}}$ where

$$CHIPX \ge CHIPX_{badpix,r}[0] \text{ and } (426)$$

$$CHIPX \leq CHIPX_{badpix,r}[1] \text{ and } (427)$$

$$CHIPY \ge CHIPY_{badpix,r}[0] \text{ and } (428)$$

CHIPY
$$\leq$$
 CHIPY_{badpix,r}[1] and (429)

TIME
$$\geq$$
 TIME_{badpix,r} and (430)

$$TIME < TIME_STOP_{badpix,r}$$
 (431)

and

$$STATUS_{badpix,r}[8] = 1 \text{ or}$$
 (432)

$$STATUS_{\text{badpix},r}[10] = 1, \tag{433}$$

then

$$STATUS[5] = 1 \tag{434}$$

for the event.

vi. If $DATAMODE_{in} = CC33_FAINT$ or $DATAMODE_{in} = CC33_GRADED$ and there are one or more row r in HDU h_{badpix} where

$$CHIPX \ge CHIPX_{badpix,r}[0] \text{ and } (435)$$

$$CHIPX \leq CHIPX_{badpix,r}[1] \text{ and}$$
 (436)

TIME
$$\geq$$
 TIME_{badpix,r} and (437)

$$TIME < TIME_STOP_{badpix,r}$$
 (438)

and

$$STATUS_{\text{badpix},r}[8] = 1 \text{ or}$$
 (439)

$$STATUS_{\text{badpix},r}[10] = 1, \tag{440}$$

then

$$STATUS[5] = 1 \tag{441}$$

for the event.

vii. If $\mathtt{DATAMODE_{in}} = \mathtt{FAINT}$, $\mathtt{DATAMODE_{in}} = \mathtt{FAINT_BIAS}$, $\mathtt{DATAMODE_{in}} = \mathtt{GRADED}$, or $\mathtt{DATAMODE_{in}} = \mathtt{VFAINT}$ and there are one or more row r in HDU $h_{\mathtt{badpix}}$ where

$$CHIPX \ge CHIPX_{badpix,r}[0] \text{ and } (442)$$

$$CHIPX \leq CHIPX_{badpix,r}[1] \text{ and}$$
 (443)

$$CHIPY \ge CHIPY_{badpix,r}[0] \text{ and } (444)$$

CHIPY
$$\leq$$
 CHIPY_{badpix,r}[1] and (445)

$$TIME \ge TIME_{badpix,r}$$
 and (446)

$$TIME < TIME_STOP_{badpix,r}$$
 (447)

and

$$STATUS_{badpix,r}[3] = 1, (448)$$

then

$$STATUS[6] = 1 \tag{449}$$

for the event.

viii. If $\mathsf{DATAMODE_{in}} = \mathsf{CC33_FAINT}$ or $\mathsf{DATAMODE_{in}} = \mathsf{CC33_GRADED}$ and there are one or more row r in HDU h_{badpix} where

$$CHIPX \ge CHIPX_{badpix,r}[0] \text{ and } (450)$$

$$CHIPX \leq CHIPX_{badpix,r}[1] \text{ and}$$
 (451)

$$TIME \ge TIME_{badpix,r}$$
 and (452)

$$TIME < TIME_STOP_{badpix,r}$$
 (453)

and

$$\mathtt{STATUS}_{\mathrm{badpix},r}[3] = 1, \tag{454}$$

then

$$STATUS[6] = 1 \tag{455}$$

for the event.

ix. If $DATAMODE_{in} = FAINT$, $DATAMODE_{in} = FAINT_BIAS$, $DATAMODE_{in} = GRADED$, or $DATAMODE_{in} = VFAINT$ and there are one or more row r in HDU h_{badDix} where

$$CHIPX \ge CHIPX_{badpix,r}[0] \text{ and}$$
 (456)

$$CHIPX \leq CHIPX_{badpix,r}[1] \text{ and } (457)$$

$$CHIPY \ge CHIPY_{badpix,r}[0] \text{ and } (458)$$

$$CHIPY \leq CHIPY_{\text{badpix},r}[1] \text{ and } (459)$$

$$TIME \ge TIME_{badpix,r}$$
 and (460)

$$TIME < TIME_STOP_{badpix,r}$$
 (461)

and

$$STATUS_{\text{badpix},r}[2] = 1 \text{ or}$$
 (462)

$$STATUS_{\text{badpix},r}[4] = 1, \tag{463}$$

then

$$STATUS[8] = 1 \tag{464}$$

for the event.

x. If $\mathsf{DATAMODE_{in}} = \mathsf{CC33_FAINT}$ or $\mathsf{DATAMODE_{in}} = \mathsf{CC33_GRADED}$ and there are one or more row r in HDU h_{badpix} where

$$CHIPX \ge CHIPX_{badpix,r}[0] \text{ and } (465)$$

$$CHIPX \leq CHIPX_{badpix,r}[1] \text{ and}$$
 (466)

$$TIME \ge TIME_{badpix,r}$$
 and (467)

TIME
$$<$$
 TIME_STOP_{badpix,r} (468)

and

$$STATUS_{\text{badpix},r}[2] = 1 \text{ or}$$
 (469)

$$\mathtt{STATUS}_{\mathrm{badpix},r}[4] \quad = \quad 1, \tag{470}$$

then

$$STATUS[8] = 1 \tag{471}$$

for the event.

xi. If $\mathtt{DATAMODE_{in}} = \mathtt{FAINT}$, $\mathtt{DATAMODE_{in}} = \mathtt{FAINT_BIAS}$, $\mathtt{DATAMODE_{in}} = \mathtt{GRADED}$, or $\mathtt{DATAMODE_{in}} = \mathtt{VFAINT}$ and there are one or more row r in HDU $h_{\mathtt{badpix}}$ where

$$CHIPX \ge CHIPX_{badpix,r}[0] \text{ and } (472)$$

$$CHIPX \leq CHIPX_{badpix,r}[1] \text{ and}$$
 (473)

$$CHIPY \ge CHIPY_{badpix,r}[0] \text{ and } (474)$$

$$CHIPY \leq CHIPY_{\text{badpix},r}[1] \text{ and } (475)$$

$$TIME \ge TIME_{badpix,r}$$
 and (476)

$$TIME < TIME_STOP_{badpix,r}$$
 (477)

and

$$STATUS_{\text{badpix},r}[15] = 1, \tag{478}$$

then

$$\mathsf{STATUS}[16] = 1 \tag{479}$$

for the event.

xii. If DATAMODE_{in} = CC33_FAINT or DATAMODE_{in} = CC33_GRADED and there are one or more row r in HDU $h_{\rm badpix}$ where

$$CHIPX \ge CHIPX_{badpix,r}[0] \text{ and}$$
 (480)

$$CHIPX \leq CHIPX_{badpix,r}[1] \text{ and } (481)$$

TIME
$$\geq$$
 TIME_{badpix,r} and (482)

$$TIME < TIME_STOP_{badpix,r}$$
 (483)

and

$$STATUS_{\text{badpix},r}[15] = 1, \tag{484}$$

then

$$\mathsf{STATUS}[16] = 1 \tag{485}$$

for the event.

xiii. In summary, the mapping between a bad-pixel STATUS bit and the corresponding event STATUS bit is listed in Table 1.

Table 1: Bad-pixel to event STATUS bit mapping

Bad-pixel STATUS bit	Event STATUS bit
0	4
1	4
2	8
3	6
4	8
5	0
6	0
7	4
8	5
9	0
10	5
11	4
12	4
13	4
14	4
15	16
16	4
17	4

15. PHAS:

- (a) If HDU 1 of the infile includes the column PHAS, then
 - i. the values of PHAS for an event are read from the infile.
 - ii. If PHAS[4] < the split threshold, then STATUS[k] = 1 for bit k = 1 (of 0–31).
 - iii. If PHAS[4] < PHAS[j] for one or more j = 0-3, then STATUS[k] = 1 for bit k = 1.
 - iv. If $PHAS[4] \leq PHAS[j]$ for one or more j = 5-8, then STATUS[k] = 1 for bit k = 1.
 - v. If $\mathtt{PHAS}[j] > 4095$ for one or more j = 0-8, then $\mathtt{STATUS}[k] = 1$ for bit k = 2.

16. FLTGRADE_RO:

(a) If HDU $h_{\rm in}$ of the infile includes the column PHAS and

$$doevtgrade = yes, (486)$$

 $\quad \text{then} \quad$

$$\texttt{FLTGRADE_RO} = c_{\text{fro}}[0] + 2c_{\text{fro}}[1] + 4c_{\text{fro}}[2] + 8c_{\text{fro}}[3] + (487)$$

$$16c_{\text{fro}}[5] + 32c_{\text{fro}}[6] + 64c_{\text{fro}}[7] + 128c_{\text{fro}}[8]. \tag{488}$$

The values of $c_{\text{fro}}[j]$ are determined as follows.

i. Each value of $c_{\mathrm{fro}}[j]$ is initialized such that

$$c_{\text{fro}}[j] = 1. \tag{489}$$

ii. If

$$PHAS[j] < split threshold or (490)$$

$$PHAS[j] > 4095, \tag{491}$$

then

$$c_{\text{fro}}[j] = 0. (492)$$

iii. If

$$j \geq 0 \text{ and}$$
 (493)

$$j \leq 3 \text{ and}$$
 (494)

$$PHAS[j] > PHAS[4], \tag{495}$$

then

$$c_{\text{fro}}[j] = 0. (496)$$

iv. If

$$j \geq 5 \text{ and}$$
 (497)

$$j \leq 8 \text{ and}$$
 (498)

$$PHAS[j] \geq PHAS[4], \tag{499}$$

then

$$c_{\text{fro}}[j] = 0. (500)$$

The elements j=0–8 of PHAS are depicted in Figure 1.

(b) If HDU $h_{\rm in}$ of the infile does not include the column PHAS or

$$doevtgrade = no, (501)$$

then

$$FLTGRADE_RO = NULL.$$
 (502)

$17. \text{ GRADE_RO}$:

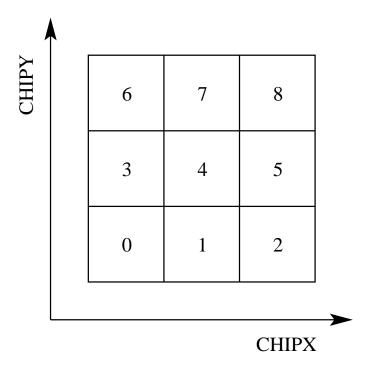


Figure 1: The relative CHIPX and CHIPY coordinates of the nine elements j = 0-8 of a 3 pixel \times 3 pixel event island PHAS[j] or PHAS_ADJ[j].

(a) If

$$FLTGRADE_RO \neq NULL and$$
 (503)

gradefile
$$\neq$$
 none and (504)

HDU h_{grade} of the gradefile has a row r, where

$$FLTGRADE_{grade}[r] = FLTGRADE_RO,$$
 (505)

then

$${\tt GRADE_RO} \quad = \quad {\tt GRADE}_{\rm grade}[r]. \tag{506}$$

(b) If

$$FLTGRADe_RO = NULL \text{ or}$$
 (507)

$$gradefile = none or$$
 (508)

HDU h_{grade} of the gradefile does not have a row r, where

$$FLTGRADE_{grade}[r] = FLTGRADE_{RO},$$
 (509)

then

$$\mathtt{GRADE_RO} \quad = \quad \mathrm{NULL}. \tag{510}$$

18. PHA_RO:

(a) If HDU $h_{\rm in}$ of the infile includes the column PHAS and

$$doevtgrade = yes and$$
 (511)

$$GRADE_RO \neq NULL,$$
 (512)

then

$$\mathtt{PHA_RO} = \sum_{j=0}^{8} c_{\mathrm{pro}}[j]\mathtt{PHAS}[j]. \tag{513}$$

The values of $c_{\text{pro}}[j]$ are determined as follows.

i. Each value of $c_{\text{pro}}[j]$ is initialized such that

$$c_{\text{pro}}[j] = 1. (514)$$

ii. If

$$PHAS[j] < split threshold, (515)$$

then

$$c_{\text{pro}}[j] = 0. (516)$$

iii. If

$$j \geq 0 \text{ and}$$
 (517)

$$j \leq 3 \text{ and}$$
 (518)

$$PHAS[j] > PHAS[4], \tag{519}$$

then

$$c_{\text{pro}}[j] = 0. (520)$$

iv. If

$$j \geq 5 \text{ and}$$
 (521)

$$j \leq 8 \text{ and}$$
 (522)

$$\mathtt{PHAS}[j] \ \geq \ \mathtt{PHAS}[4], \tag{523}$$

then

$$c_{\rm pro}[j] = 0. (524)$$

v. If

$$CORNERS = -1, (525)$$

$$c_{\text{pro}}[0] = 0 \text{ and} \tag{526}$$

$$c_{\rm pro}[2] = 0 \text{ and} \tag{527}$$

$$c_{\text{pro}}[6] = 0 \text{ and} \tag{528}$$

$$c_{\text{pro}}[8] = 0.$$
 (529)

vi. If

$$CORNERS = 0, (530)$$

then there are no additional constraints on $c_{\rm pro}[0],\,c_{\rm pro}[2],\,c_{\rm pro}[6],$ and $c_{\rm pro}[8].$ vii. If

$$CORNERS = 1, (531)$$

then

A. If

$$c_{\text{pro}}[1] = 0 \text{ and} \tag{532}$$

$$c_{\text{pro}}[3] = 0, (533)$$

then

$$c_{\text{pro}}[0] = 0. \tag{534}$$

B. If

$$c_{\text{pro}}[1] = 0 \text{ and} (535)$$

$$c_{\text{pro}}[5] = 0, \tag{536}$$

then

$$c_{\text{pro}}[2] = 0. (537)$$

C. If

$$c_{\rm pro}[3] = 0 \text{ and} \tag{538}$$

$$c_{\text{pro}}[7] = 0,$$
 (539)

then

$$c_{\text{pro}}[6] = 0.$$
 (540)

D. If

$$c_{\text{pro}}[5] = 0 \text{ and} \tag{541}$$

$$c_{\text{pro}}[7] = 0, \tag{542}$$

then

$$c_{\text{pro}}[8] = 0.$$
 (543)

viii. If

$$CORNERS = 2, (544)$$

then

A. If

$$c_{\text{pro}}[1] = 0 \text{ or} (545)$$

$$c_{\text{pro}}[3] = 0 \text{ or} (546)$$

$$GRADE_RO \neq 6, (547)$$

$$c_{\text{pro}}[0] = 0.$$
 (548)

B. If

$$c_{\text{pro}}[1] = 0 \text{ or} \tag{549}$$

$$c_{\rm pro}[5] = 0 \text{ or} \tag{550}$$

$$GRADE_RO \neq 6, \tag{551}$$

then

$$c_{\text{pro}}[2] = 0. \tag{552}$$

C. If

$$c_{\text{pro}}[3] = 0 \text{ or} \tag{553}$$

$$c_{\text{pro}}[7] = 0 \text{ or} \tag{554}$$

$$GRADE_RO \neq 6, \tag{555}$$

then

$$c_{\text{pro}}[6] = 0. \tag{556}$$

D. If

$$c_{\text{pro}}[5] = 0 \text{ or} \tag{557}$$

$$c_{\rm pro}[7] = 0 \text{ or} \tag{558}$$

$$GRADE_RO \neq 6, \tag{559}$$

then

$$c_{\text{pro}}[8] = 0. \tag{560}$$

The elements j=0--8 of PHAS are depicted in Figure 1.

(b) If HDU $h_{\rm in}$ of the infile does not include the column PHAS or

$$doevtgrade = no or (561)$$

$$GRADE_RO = NULL,$$
 (562)

then

i. If HDU $h_{\rm in}$ of the infile includes the column PHA_RO, then

$$PHA_RO = PHA_RO_{in}.$$
 (563)

- ii. If HDU $h_{\rm in}$ of the infile does not include the column PHA_RO, then
 - A. If HDU $h_{\rm in}$ of the infile includes the column PHA and HDU $h_{\rm in}$ of the infile includes the keyword TGAINCOR and

$$TGAINCOR = 0, (564)$$

then

$$\mathtt{PHA_RO} = \mathtt{PHA}_{\mathrm{in}}. \tag{565}$$

B. If HDU $h_{\rm in}$ of the infile includes the column PHA and HDU $h_{\rm in}$ of the infile includes the keyword TGAINCOR and

$$TGAINCOR \neq 0, (566)$$

$$PHA_RO = NULL.$$
 (567)

C. If HDU $h_{\rm in}$ of the infile includes the column PHA and HDU $h_{\rm in}$ of the infile does not include the keyword TGAINCOR then

$$PHA_{RO} = PHA_{in}.$$
 (568)

D. If HDU $h_{\rm in}$ of the infile does not include the column PHA, then

$$PHA_RO = NULL. (569)$$

19. PHAS_ADJ:

(a) Non-graded: Ιf

$$apply_cti = yes$$
 (570)

and if HDU $h_{\rm in}$ of the infile includes the column PHAS, then the CTI-adjusted pulse heights are computed as follows.

i. The real-valued arrays for the serial CTI adjustment Δ_x , the parallel CTI adjustment Δ_y , and the adjusted pulse heights PHAS_ADJ are initialized such that

$$\Delta_x[j] = 0, (571)$$

$$\Delta_y[j] = 0, \text{ and}$$
 (572)

$$PHAS_ADJ[j] = PHAS[j]$$
 (573)

for every element j = 0-8, where the starting point for the adjusted pulse heights are the unadjusted pulse heights PHAS. Note that the values of the unadjusted pulse heights PHAS remain unchanged to ensure that it is possible to remove the CTI adjustment or to reapply the adjustment if the algorithm or calibration data are modified.

ii. The CTI iteration counter n is initialized such that

$$n = 1. (574)$$

iii. The temporary variables Δ'_x , Δ'_y , and PHAS_ADJ' are set such that

$$\Delta_x'[j] = \Delta_x[j], \tag{575}$$

$$\Delta_{y}'[j] = \Delta_{y}[j], \text{ and}$$
 (576)

(584)

$$PHAS_ADJ'[j] = PHAS_ADJ[j]$$
 (577)

for each element j.

iv. A. If there is a serial CTI trap-density map in the ctifile for CCD_ID and NODE_ID = 0 or 2, then the values of Δ_x are given by

$$\Delta_x[0] = c_x[0]s_x \rho_x[0]V_x[0], \tag{578}$$

$$\Delta_x[1] = c_x[1]s_x \rho_x[1]V_x[1] - c_x'[0]s_x \rho_x[0]V_x[0], \tag{579}$$

$$\Delta_x[2] = c_x[2]s_x \rho_x[2]V_x[2] - c_x'[1]s_x \rho_x[1]V_x[1], \tag{580}$$

$$\Delta_x[3] = c_x[3] s_x \rho_x[3] V_x[3], \tag{581}$$

$$\Delta_x[4] = c_x[4]s_x \rho_x[4]V_x[4] - c_x'[3]s_x \rho_x[3]V_x[3], \tag{582}$$

$$\Delta_x[5] = c_x[5]s_x\rho_x[5]V_x[5] - c'_x[4]s_x\rho_x[4]V_x[4],$$

$$\Delta_x[6] = c_x[6]s_x\rho_x[6]V_x[6],$$
(583)

$$\Delta_x[7] = c_x[7]s_x\rho_x[7]V_x[7] - c_x'[6]s_x\rho_x[6]V_x[6], \text{ and}$$
 (585)

$$\Delta_x[8] = c_x[8]s_x \rho_x[8]V_x[8] - c_x'[7]s_x \rho_x[7]V_x[7], \tag{586}$$

```
PHAS[j] + \Delta'_{x}[j] + \Delta'_{y}[j] < split threshold
c_x[j] = \begin{cases} \text{ (for all } j), \\ \text{PHAS}[j] + \Delta_x'[j] + \Delta_y'[j] \geq \text{ split threshold and} \\ \text{PHAS}[j] + \Delta_x'[j] + \Delta_y'[j] < \\ \text{PHAS}[j] + \Delta_x'[j] + \Delta_y'[j-1] + \Delta_y'[j-1] \\ \text{ (for } j = 1, 2, 4, 5, 7, 8), \\ \text{PHAS}[j] + \Delta_x'[j] + \Delta_y'[j] \geq \text{ split threshold} \\ \text{ (for } j = 0, 3, 6) \\ \text{PHAS}[j] + \Delta_x'[j] + \Delta_y'[j] \geq \text{ split threshold and} \\ \text{PHAS}[j] + \Delta_x'[j] + \Delta_y'[j] \geq \\ \text{PHAS}[j-1] + \Delta_x'[j-1] + \Delta_y'[j-1] \\ \text{ (for } j = 1, 2, 4, 5, 7, 8) \end{cases}
                                                                                            (for j = 1, 2, 4, 5, 7, 8),
                                                                                 \mathtt{PHAS}[j] + \Delta_x'[j] + \Delta_y'[j] < \text{ split threshold or }
                                                                                PHAS[j+1] + \Delta'_x[j+1] + \Delta'_y[j+1] < split threshold or
                                                                                j \to \texttt{CHIPX} = 1,256,513, \text{ or } 768
c_x'[j] \ = \ \left\{ \begin{array}{l} j \to \mathtt{CHIPX} = 1,256,513, \text{ or } 768 \\ (\text{for } j = 0,1,3,4,6,7), \\ \mathtt{PHAS}[j] + \Delta_x'[j] + \Delta_y'[j] > \\ \mathtt{PHAS}[j+1] + \Delta_x'[j+1] + \Delta_y'[j+1] \text{ and} \\ \mathtt{PHAS}[j+1] + \Delta_x'[j+1] + \Delta_y'[j+1] \geq \text{ split threshold} \\ (\text{for } j = 0,1,3,4,6,7), \\ \mathtt{PHAS}[j] + \Delta_x'[j] + \Delta_y'[j] \leq \\ \mathtt{PHAS}[j+1] + \Delta_x'[j+1] + \Delta_y'[j+1] \text{ and} \\ \mathtt{PHAS}[j] + \Delta_x'[j] + \Delta_y'[j] \geq \text{ split threshold} \\ (\text{for } j = 0,1,3,4,6,7), \\ \end{array} \right.
         s_x = a temperature dependent scaling factor:
                                   \int 1 + \text{TCTIX} (T - \text{FP\_TEMPO}), \text{ if mtlfile } \neq \text{"none"}
                                                                                                                                                                                                                                                                          (587)
                                                                                                                          if mtlfile = "none"
                = the CCD_ID dependent value in the column TCTIX of the ctifile,
                                                                                                                                                                                                                                                                          (588)
          T \quad = \quad \left(\frac{t'-t_k'}{t_{k\perp 1}'-t_k'}\right) \left(\mathtt{FP\_TEMP}_{k+1} - \mathtt{FP\_TEMP}_k\right) + \mathtt{FP\_TEMP}_k,
                                                                                                                                                                                                                                                                         (589)
                                 \{ T \text{ is the time dependent focal plane temperature, } 
           t' \ = \ t + \mathtt{TIMEDEL}_{\mathrm{in}} \left( \mathtt{TIMEPIXR}_{\mathrm{evt}} - 0.5 \right),
                                                                                                                                                                                                                                                                          (590)
                                   \left\{ \begin{array}{l} t \text{ is the TIME of the event,} \\ \text{TIMEPIXR}_{\text{evt}} \text{ is a keyword in the infile,} \end{array} \right. 
          t_k' = \text{TIME}_k + \text{TIMEDEL}_{mtl} \left( \text{TIMEPIXR}_{mtl} - 0.5 \right),
                                                                                                                                                                                                                                                                          (591)
                                        \mathtt{TIME}_k is the k^{\mathtt{th}} element of the column \mathtt{TIME} in the \mathtt{mtlfile},
                                  \begin{cases} t_k' \leq t', \\ \text{If } t' < t_k' \text{ for } k = 0, \text{ then } k = 0, \\ \text{FP\_TEMP}_k \text{ is the } k^{\text{th}} \text{ element of the column FP\_TEMP in the mtlfile,} \\ \text{TIMEDEL}_{\text{mtl}} \text{ is a keyword in the mtlfile,} \end{cases}
                                        TIMEPIXR<sub>mtl</sub> is a keyword in the mtlfile,
   t'_{k+1} = \text{TIME}_{k+1} + \text{TIMEDEL}_{mtl} \left( \text{TIMEPIXR}_{mtl} - 0.5 \right),
                                                                                                                                                                                                                                                                         (592)
                                   \begin{cases} \text{TIME}_{k+1} \text{ is the } (k+1)^{\text{th}} \text{ element of the column TIME in the mtlfile,} \\ t'_{k+1} > t', \\ \text{If } t' > t'_k \text{ for } k = n, \text{ where } n \text{ is the last element, then } k = n, \\ \text{FP\_TEMP}_{k+1} \text{ is the } (k+1)^{\text{th}} \text{ element of the column FP\_TEMP in the} \end{cases} 
                                                     mtlfile,
```

$$\begin{array}{lll} \text{FP_TEMPO} &=& \text{a keyword in the ctifile,} & (593) \\ \rho_x[j] &=& \text{serial trap density,} & (594) \\ && \left\{ \begin{array}{l} \rho_x[j] \text{ depends upon the CCD_ID and upon the nint(CHIPX_ADJ) and nint(CHIPY_ADJ)} \\ \text{coordinates associated with element } j \text{ of PHAS_ADJ}[j] \text{ (see Fig. 1),} \end{array} \right. \\ V_x[j] &=& \left(\begin{array}{l} \frac{\text{PHAS}[j] + \Delta_x'[j] + \Delta_y'[j] - \text{PHA}_l}{\text{PHA}_{l+1} - \text{PHA}_l} \right) \text{(VOLUME_X}_{l+1} - \text{VOLUME_X}_l) + \\ \text{VOLUME_X}_l, & (595) \end{array} \right. \\ && \left\{ \begin{array}{l} \text{PHA}_l \text{ is the } l^{\text{th}} \text{ element of the column PHA in the ctifile,} \\ \text{PHA}_l \text{ (and PHA}_{l+1}) \text{ are CCD_ID depdendent,} \\ \text{PHA}_l &\leq& \text{PHAS}[j] + \Delta_x'[j] + \Delta_y'[j] \text{ for } l = 0, \text{ then } l = 0, \\ \text{PHA}_{l+1} \text{ is the } (l+1)^{\text{th}} \text{ element of the column PHA in the ctifile,} \\ \text{PHA}_{l+1} &>& \text{PHAS}[j] + \Delta_x'[j] + \Delta_y'[j] \text{ for } l = n, \text{ where } n \text{ is the last} \\ && \text{element, then } l = n, \\ \text{VOLUME_X}_l \text{ is the } l^{\text{th}} \text{ element of the column VOLUME_X} \text{ in the ctifile,} \\ \text{VOLUME_X}_l, \text{ which is CCD_ID depdendent, is associated with PHA}_l, \\ \text{VOLUME_X}_{l+1} \text{ is the } (l+1)^{\text{th}} \text{ element of the column VOLUME_X} \text{ in the } \\ && \text{ctifile, and} \\ \text{VOLUME_X}_{l+1}, \text{ which is CCD_ID depdendent, is associated with PHA}_{l+1} \end{array} \right.$$

B. If there is a serial CTI trap-density map in the ctifile for CCD_ID and NODE_ID = 1 or 3, then the values of Δ_x are given by

$$\Delta_{x}[0] = c_{x}[0]s_{x}\rho_{x}[0]V_{x}[0] - c'_{x}[1]s_{x}\rho_{x}[1]V_{x}[1],$$

$$\Delta_{x}[1] = c_{x}[1]s_{x}\rho_{x}[1]V_{x}[1] - c'_{x}[2]s_{x}\rho_{x}[2]V_{x}[2],$$
(596)

$$\Delta_x[2] = c_x[2]s_x\rho_x[2]V_x[2],$$

$$\Delta_x[3] = c_x[3]s_x\rho_x[3]V_x[3] - c_x'[4]s_x\rho_x[4]V_x[4],$$
(598)

$$\Delta_x[3] = c_x[3]s_x\rho_x[3]V_x[3] - c'_x[4]s_x\rho_x[4]V_x[4],$$

$$\Delta_x[4] = c_x[4]s_x\rho_x[4]V_x[4] - c'_x[5]s_x\rho_x[5]V_x[5],$$
(600)

$$\Delta_x[5] = c_x[5]s_x\rho_x[5]V_x[5], \tag{601}$$

$$\Delta_{x}[5] = c_{x}[5]s_{x}\rho_{x}[5]V_{x}[5],$$

$$\Delta_{x}[6] = c_{x}[6]s_{x}\rho_{x}[6]V_{x}[6] - c'_{x}[7]s_{x}\rho_{x}[7]V_{x}[7],$$

$$\Delta_{x}[7] = c_{x}[7]s_{x}\rho_{x}[7]V_{x}[7] - c'_{x}[8]s_{x}\rho_{x}[8]V_{x}[8],$$
(602)
$$\Delta_{x}[7] = c_{x}[7]s_{x}\rho_{x}[7]V_{x}[7] - c'_{x}[8]s_{x}\rho_{x}[8]V_{x}[8],$$
(603)

$$\Delta_x[7] = c_x[7]s_x\rho_x[7]V_x[7] - c_x'[8]s_x\rho_x[8]V_x[8], \text{ and}$$
 (603)

$$\Delta_x[8] = c_x[8]s_x\rho_x[8]V_x[8], \tag{604}$$

$$c_x[j] \ = \ \begin{cases} 0 & \left\{ \begin{array}{l} \operatorname{PHAS}[j] + \Delta_x'[j] + \Delta_y'[j] < \operatorname{split\ threshold} \\ (\operatorname{for\ all\ } j), \\ \\ \operatorname{PHAS}[j] + \Delta_x'[j] + \Delta_y'[j] \ge \operatorname{split\ threshold\ and} \\ \operatorname{PHAS}[j] + \Delta_x'[j] + \Delta_y'[j] < \\ \\ \operatorname{PHAS}[j + 1] + \Delta_x'[j + 1] + \Delta_y'[j + 1] \\ (\operatorname{for\ } j = 0, 1, 3, 4, 6, 7), \\ \\ \operatorname{PHAS}[j] + \Delta_x'[j] + \Delta_y'[j] \ge \operatorname{split\ threshold\ } \\ (\operatorname{for\ } j = 2, 5, 8) \\ \operatorname{PHAS}[j] + \Delta_x'[j] + \Delta_y'[j] \ge \operatorname{split\ threshold\ } \\ \operatorname{PHAS}[j] + \Delta_x'[j] + \Delta_y'[j] \ge \operatorname{split\ threshold\ } \\ \operatorname{PHAS}[j] + \Delta_x'[j] + \Delta_y'[j] \ge \operatorname{PHAS}[j + 1] + \Delta_y'[j + 1] \\ (\operatorname{for\ } j = 0, 1, 3, 4, 6, 7), \end{cases} \end{cases}$$

$$c_x'[j] \ = \ \left\{ \begin{array}{l} \text{PHAS}[j] + \Delta_x'[j] + \Delta_y'[j] < \text{ split threshold or } \\ \text{PHAS}[j-1] + \Delta_x'[j-1] + \Delta_y'[j-1] < \text{ split threshold or } \\ j \to \text{CHIPX} = 257, 512, 769, \text{ or } 1024 \\ \text{ (for } j=1,2,4,5,7,8), \\ \text{PHAS}[j] + \Delta_x'[j] + \Delta_y'[j] > \\ \text{PHAS}[j-1] + \Delta_x'[j-1] + \Delta_y'[j-1] \text{ and } \\ \text{PHAS}[j-1] + \Delta_x'[j-1] + \Delta_y'[j-1] \geq \text{ split threshold } \\ \text{ (for } j=1,2,4,5,7,8), \\ \end{array} \right.$$

$$1 \left\{ \begin{array}{l} \text{PHAS}[j] + \Delta_x'[j] + \Delta_y'[j] \leq \\ \text{PHAS}[j-1] + \Delta_x'[j-1] + \Delta_y'[j-1] \text{ and } \\ \text{PHAS}[j] + \Delta_x'[j] + \Delta_y'[j] \geq \text{ split threshold } \\ \text{ (for } j=1,2,4,5,7,8), \end{array} \right.$$

and s_x , T, t', t'_k , t'_{k+1} , $\rho_x[j]$, and $V_x[j]$ are given by equations. 587, 589, 590, 591, 592, 594, and 595, respectively.

v. If there is a parallel CTI trap-density map in the ctifile for CCD_ID, then the values of Δ_y are given by

$$\Delta_y[0] = c_y[0] s_y \rho_y[0] V_y[0], \tag{605}$$

$$\Delta_y[1] = c_y[1]s_y\rho_y[1]V_y[1], \tag{606}$$

$$\Delta_{y}[2] = c_{y}[2]s_{y}\rho_{y}[2]V_{y}[2], \tag{607}$$

$$\Delta_y[3] = c_y[3]s_y\rho_y[3]V_y[3] - c_y'[0]s_y\rho_y[0]V_y[0], \tag{608}$$

$$\Delta_y[4] = c_y[4]s_y\rho_y[4]V_y[4] - c_y'[1]s_y\rho_y[1]V_y[1], \tag{609}$$

$$\Delta_y[5] = c_y[5]s_y\rho_y[5]V_y[5] - c_y'[2]s_y\rho_y[2]V_y[2], \tag{610}$$

$$\Delta_y[6] = c_y[6]s_y\rho_y[6]V_y[6] - c_y'[3]s_y\rho_y[3]V_y[3], \tag{611}$$

$$\Delta_y[7] = c_y[7]s_y\rho_y[7]V_y[7] - c'_y[4]s_y\rho_y[4]V_y[4], \text{ and}$$
 (612)

$$\Delta_y[8] = c_y[8]s_y\rho_y[8]V_y[8] - c_y'[5]s_y\rho_y[5]V_y[5], \tag{613}$$

$$c_y[j] \ = \ \begin{cases} 0 & \left\{ \begin{array}{l} \operatorname{PHAS}[j] + \Delta_x'[j] + \Delta_y'[j] < \operatorname{split\ threshold} \\ (\operatorname{for\ all\ } j), \\ \operatorname{PHAS}[j] + \Delta_x'[j] + \Delta_y'[j] \geq \operatorname{split\ threshold\ and} \\ \operatorname{PHAS}[j] + \Delta_x'[j] + \Delta_y'[j] < \\ \operatorname{PHAS}[j - 3] + \Delta_x'[j - 3] + \Delta_y'[j - 3] \\ (\operatorname{for\ } j = 3, 4, 5, 6, 7, 8), \\ \operatorname{PHAS}[j] + \Delta_x'[j] + \Delta_y'[j] \geq \operatorname{split\ threshold\ } \\ (\operatorname{for\ } j = 0, 1, 2) \\ \operatorname{PHAS}[j] + \Delta_x'[j] + \Delta_y'[j] \geq \operatorname{split\ threshold\ and} \\ \operatorname{PHAS}[j] + \Delta_x'[j] + \Delta_y'[j] \geq \\ \operatorname{PHAS}[j - 3] + \Delta_x'[j - 3] + \Delta_y'[j - 3] \\ (\operatorname{for\ } j = 3, 4, 5, 6, 7, 8), \\ \end{cases} \end{cases}$$

$$c_y'[j] \ = \ \left\{ \begin{array}{l} \text{PHAS}[j] + \Delta_x'[j] + \Delta_y'[j] < \text{ split threshold or } \\ \text{PHAS}[j+3] + \Delta_x'[j+3] + \Delta_y'[j+3] < \text{ split threshold or } \\ j \to \text{CHIPY} = \text{1or } 1024 \\ \text{(for } j=1,2,3,4,5), \\ \text{PHAS}[j] + \Delta_x'[j] + \Delta_y'[j] > \\ \text{PHAS}[j+3] + \Delta_x'[j+3] + \Delta_y'[j+3] \text{ and } \\ \text{PHAS}[j+3] + \Delta_x'[j+3] + \Delta_y'[j+3] \geq \text{ split threshold } \\ \text{(for } j=0,1,2,3,4,5), \\ \text{PHAS}[j] + \Delta_x'[j] + \Delta_y'[j] \leq \\ \text{PHAS}[j] + \Delta_x'[j] + \Delta_y'[j] \geq \text{ split threshold } \\ \text{(for } j=0,1,2,3,4,5), \\ \text{PHAS}[j] + \Delta_x'[j] + \Delta_y'[j] \geq \text{ split threshold } \\ \text{(for } j=0,1,2,3,4,5), \\ \end{array} \right.$$

 s_y = a temperature dependent scaling factor:

$$\begin{cases} 1 + \texttt{TCTIY}(T - \texttt{FP_TEMPO}), & \text{if mtlfile } \neq \text{"none"} \\ 1, & \text{if mtlfile } = \text{"none"} \end{cases}$$
(614)

= the CCD_ID dependent value in the column TCTIY of the ctifile, TCTIY (615)

$$\rho_y[j] = \text{parallel trap density},$$
 (616)

 $\left\{\begin{array}{l} \rho_y[j] \text{ depends upon the CCD_ID and upon the nint(CHIPX_ADJ) and nint(CHIPY_ADJ)} \\ \text{coordinates associated with element } j \text{ of PHAS_ADJ}[j] \text{ (see Fig. 1)}, \end{array}\right.$

$$\begin{split} V_y[j] &= \left(\frac{\mathtt{PHAS}[j] + \Delta_x'[j] + \Delta_y'[j] - \mathtt{PHA}_l}{\mathtt{PHA}_{l+1} - \mathtt{PHA}_l}\right) (\mathtt{VOLUME_Y}_{l+1} - \mathtt{VOLUME_Y}_l) + \\ &\quad \mathtt{VOLUME_Y}_l, \end{split} \tag{617}$$

 PHA_l is the l^{th} element of the column PHA in the ctifile,

 \mathtt{PHA}_l (and $\mathtt{PHA}_{l+1})$ are $\mathtt{CCD_ID}$ dependent,

PHA $_l$ (and PHA $_{l+1}$) are CCD_ID dependent, PHA $_l \leq$ PHAS $[j] + \Delta_x'[j] + \Delta_y'[j]$, If PHA $_l >$ PHAS $[j] + \Delta_x'[j] + \Delta_y'[j]$ for l=0, then l=0, PHA $_{l+1}$ is the $(l+1)^{\rm th}$ element of the column PHA in the ctifile, PHA $_{l+1} >$ PHAS $[j] + \Delta_x'[j] + \Delta_y'[j]$, If PHA $_{l+1} \leq$ PHAS $[j] + \Delta_x'[j] + \Delta_y'[j]$ for l=n, where n is the last element, then l=n, VOLUME_Y $_l$ is the $l^{\rm th}$ element of the column VOLUME_Y in the ctifile, VOLUME_Y $_{l+1}$ is the $(l+1)^{\rm th}$ element of the column VOLUME_Y in the ctifile

VOLUME_ Y_{l+1} , which is CCD_ID dependent, is associated with PHA $_{l+1}$,

and T, t', t'_k , and t'_{k+1} , are given by equations. 589, 590, 591, and 592, respectively. vi. The CTI-adjusted pulse heights

$$PHAS_ADJ[j] = PHAS[j] + \Delta_x[j] + \Delta_y[j]$$
(618)

for all j.

vii. A. If

$$[PHAS_ADJ'[j] - PHAS_ADJ[j]]$$
 < cticonverge (for all j) and (619)

$$n \leq \max_{\text{cti_iter}}$$
 (620)

then the computation of PHAS_ADJ is complete for the event.

B. If

$$|PHAS_ADJ'[j] - PHAS_ADJ[j]| \ge cticonverge (for one or more j) and (621)$$

$$n < \text{max_cti_iter},$$
 (622)

then n = n + 1 and steps 1.5.19(a)iii–1.5.19(a)vii are repeated.

C. If

$$|PHAS_ADJ'[j] - PHAS_ADJ[j]| \ge cticonverge (for one or more j) and (623)$$

$$n \geq \max_{\text{cti_iter}}$$
, (624)

then no additional iterations are performed, the values of PHAS_ADJ[j] from the most recent iteration are used as are, and $\mathtt{STATUS}[k] = 1$ for bit k = 20 (of 0–31) to indicate that the CTI adjustment did not converge.

20. FLTGRADE:

(a) If HDU $h_{\rm in}$ of the infile includes the column PHAS and

$$apply_cti = yes and$$
 (625)

$$doevtgrade = yes, (626)$$

then

$$FLTGRADE = c_f[0] + 2c_f[1] + 4c_f[2] + 8c_f[3] +$$
 (627)

$$16c_{\rm f}[5] + 32c_{\rm f}[6] + 64c_{\rm f}[7] + 128c_{\rm f}[8]. \tag{628}$$

The values of $c_f[j]$ are determined as follows.

i. Each value of $c_{\mathbf{f}}[j]$ is initialized such that

$$c_{\mathbf{f}}[j] = 1. \tag{629}$$

ii. If

$$PHAS_ADJ[j] < split threshold, (630)$$

then

$$c_{\mathbf{f}}[j] = 0. ag{631}$$

The elements j=0–8 of PHAS_ADJ are depicted in Figure 1.

(b) If HDU $h_{\rm in}$ of the infile includes the column PHAS and

$$apply_cti = no and$$
 (632)

$$doevtgrade = yes, (633)$$

then

$$FLTGRADE = FLTGRADE_RO.$$
 (634)

(c) If HDU h_{in} of the infile does not include the column PHAS or

$$doevtgrade = no, (635)$$

then

i. If HDU $h_{\rm in}$ of the infile includes the column FLTGRADE, then

$$FLTGRADE = FLTGRADE_{in}.$$
 (636)

ii. If HDU $h_{\rm in}$ of the infile does not include the column FLTGRADE, then

$$FLTGRADE = NULL.$$
 (637)

$21. \; \mathsf{GRADE}$:

(a) If

FLTGRADE
$$\neq$$
 NULL and (638)

gradefile
$$\neq$$
 none and (639)

HDU h_{grade} of the gradefile has a row r, where

$$FLTGRADE_{grade}[r] = FLTGRADE,$$
 (640)

then

$$GRADE = GRADE_{grade}[r]. (641)$$

(b) If

$$FLTGRADE = NULL or$$
 (642)

$$gradefile = none or$$
 (643)

HDU h_{grade} of the gradefile does not have a row r, where

$$\mathtt{FLTGRADE}_{\mathrm{grade}}[r] \quad = \quad \mathtt{FLTGRADE}, \tag{644}$$

then

$$GRADE = NULL.$$
 (645)

22. PHA:

(a) Timed mode, CTI adjusted, not NULL:

$$DATAMODE_{in} = CC33_FAINT or (646)$$

$$DATAMODE_{in} = FAINT or$$
 (647)

$$DATAMODE_{in} = FAINT_BIAS or$$
 (648)

$$DATAMODE_{in} = VFAINT, (649)$$

and

$$doevtgrade = yes, and (650)$$

$$apply_cti = yes,$$
 (651)

and

CORNERS
$$\neq$$
 2 or (652)

$$GRADE \neq NULL, \tag{653}$$

then

$$\mbox{PHA} \quad = \quad \sum_{j=0}^{8} c_{\rm p}[j] \, \mbox{PHAS_ADJ}[j]. \eqno(654)$$

The elements j=0–8 of PHAS_ADJ are depicted in Figure 1. The values of $c_p[j]$ are determined as follows.

i. The values are initialized such that

$$c_{\mathbf{p}}[j] = 1 \tag{655}$$

for j = 0-8.

ii. If

$$PHAS_ADJ[j] < split threshold, (656)$$

then

$$c_{\rm p}[j] = 0.$$
 (657)

iii. If

$$CORNERS = -1, (658)$$

then

$$c_{\rm p}[0] = c_{\rm p}[2] = c_{\rm p}[6] = c_{\rm p}[8] = 0.$$
 (659)

iv. If

$$CORNERS = 0, (660)$$

then there are no additional constraints on $c_p[0]$, $c_p[2]$, $c_p[6]$, and $c_p[8]$.

v. I

$$CORNERS = 1, (661)$$

then

A. If

$$c_{\rm p}[1] = c_{\rm p}[3] = 0,$$
 (662)

then

$$c_{\rm p}[0] = 0.$$
 (663)

B. If

$$c_{\rm p}[1] = c_{\rm p}[5] = 0,$$
 (664)

then

$$c_{\rm p}[2] = 0.$$
 (665)

C. If

$$c_{\rm p}[3] = c_{\rm p}[7] = 0,$$
 (666)

$$c_{\rm p}[6] = 0.$$
 (667)

D. If

$$c_{\rm p}[5] = c_{\rm p}[7] = 0,$$
 (668)

then

 $c_{\rm p}[8] = 0. ag{669}$

vi. If

CORNERS = 2, (670)

then

A. If

$$c_{\mathbf{p}}[1] = 0 \text{ or} \tag{671}$$

$$c_{\mathbf{p}}[3] = 0 \text{ or} ag{672}$$

 $\mathsf{GRADE} \ \neq \ 6, \tag{673}$

then

$$c_{\rm p}[0] = 0.$$
 (674)

B. If

$$c_{\rm p}[1] = 0 \text{ or}$$
 (675)

$$c_{\mathbf{p}}[5] = 0 \text{ or} \tag{676}$$

$$\mathsf{GRADE} \neq 6, \tag{677}$$

then

$$c_{\rm p}[2] = 0.$$
 (678)

C. If

$$c_{\mathbf{p}}[3] = 0 \text{ or} \tag{679}$$

$$c_{\mathbf{p}}[7] = 0 \text{ or} \tag{680}$$

$$\mathtt{GRADE} \ \neq \ 6, \tag{681}$$

then

$$c_{\rm p}[6] = 0.$$
 (682)

D. If

$$c_{\rm p}[5] = 0 \text{ or}$$
 (683)

$$c_{\rm p}[7] = 0 \text{ or}$$
 (684)

$$\mathtt{GRADE} \ \neq \ 6, \tag{685}$$

$$c_{\rm p}[8] = 0.$$
 (686)

(b) Timed mode, CTI adjusted, NULL:

$$DATAMODE_{in} = CC33_FAINT or$$
 (687)

$$DATAMODE_{in} = FAINT or (688)$$

$$DATAMODE_{in} = FAINT_BIAS or (689)$$

$$DATAMODE_{in} = VFAINT, (690)$$

and

$$doevtgrade = yes, and (691)$$

$$apply_cti = yes,$$
 (692)

and

$$CORNERS = 2 \text{ and} (693)$$

$$GRADE = NULL, (694)$$

then

$$PHA = NULL. (695)$$

(c) Timed mode, not CTI adjusted, not NULL:

$$DATAMODE_{in} = CC33_FAINT or$$
 (696)

$$DATAMODE_{in} = FAINT or$$
 (697)

$$DATAMODE_{in} = FAINT_BIAS or$$
 (698)

$$DATAMODE_{in} = VFAINT, (699)$$

and

$$doevtgrade = yes, and (700)$$

$$apply_cti = no, (701)$$

and

$$CORNERS \neq 2 \text{ or} \tag{702}$$

$$GRADE \neq NULL, \tag{703}$$

then

$${\rm PHA} \ = \ \sum_{j=0}^{8} c_{\rm p}[j] \, {\rm PHAS}[j]. \eqno(704)$$

The elements j=0–8 of PHAS are depicted in Figure 1. The values of $c_{\rm p}[j]$ are determined as follows.

i. The values are initialized such that

$$c_{\mathbf{p}}[j] = 1 \tag{705}$$

for j = 0-8.

ii. If

$$PHAS[j] < split threshold, (706)$$

then

$$c_{\mathbf{p}}[j] = 0. (707)$$

iii. If

$$CORNERS = -1, (708)$$

then

$$c_{\rm p}[0] = c_{\rm p}[2] = c_{\rm p}[6] = c_{\rm p}[8] = 0.$$
 (709)

iv. If

$$CORNERS = 0, (710)$$

then there are no additional constraints on $c_p[0]$, $c_p[2]$, $c_p[6]$, and $c_p[8]$.

v. If

$$CORNERS = 1, (711)$$

then

A. If

$$c_{\rm p}[1] = c_{\rm p}[3] = 0,$$
 (712)

then

$$c_{\rm p}[0] = 0.$$
 (713)

B. If

$$c_{\mathbf{p}}[1] = c_{\mathbf{p}}[5] = 0,$$
 (714)

then

$$c_{\rm p}[2] = 0.$$
 (715)

C. If

$$c_{\rm p}[3] = c_{\rm p}[7] = 0,$$
 (716)

then

$$c_{\rm p}[6] = 0. ag{717}$$

D. If

$$c_{\rm p}[5] = c_{\rm p}[7] = 0,$$
 (718)

$$c_{\rm p}[8] = 0.$$
 (719)

vi If

vi. If				
	CORNERS	=	2,	(720)
then				
A. If				
	$c_{\mathrm{p}}[1]$	=	0 or	(721)
	$c_{\mathbf{p}}[3]$	=	0 or	(722)
	GRADE	\neq	6,	(723)
then				
	$c_{\mathbf{p}}[0]$	=	0.	(724)
B. If				
	$c_{\rm p}[1]$	=	0 or	(725)
	$c_{ m p}[5]$			(726)
	GRADE			(727)
then				
	$c_{\mathrm{p}}[2]$	=	0.	(728)
C. If				
	$c_{\mathbf{p}}[3]$	=	0 or	(729)
	$c_{\mathrm{p}}[7]$			(730)
	GRADE	\neq	6,	(731)
then				
	$c_{\rm p}[6]$	=	0.	(732)
D. If				
	$c_{\mathrm{p}}[5]$	=	0 or	(733)
	$c_{\mathrm{p}}[7]$			(734)
	GRADE			(735)
then				
	$c_{\rm p}[8]$	=	0.	(736)
Cimed mode, not CTI adjusted, NULL:				

(d) If

> ${\tt DATAMODE_{in}} \ = \ CC33_FAINT \ or \\$ (737)

 $\mathtt{DATAMODE}_{\mathrm{in}} \ = \ \mathrm{FAINT} \ \mathrm{or}$ (738)

 $\mathtt{DATAMODE}_{\mathrm{in}} \ = \ \mathrm{FAINT_BIAS} \ \mathrm{or}$ (739)

 $\mathtt{DATAMODE_{in}} \ = \ \mathrm{VFAINT},$ (740) and

$$doevtgrade = yes, and$$
 (741)

$$apply_cti = no, (742)$$

and

$$CORNERS = 2 \text{ and} (743)$$

$$GRADE = NULL, (744)$$

then

$$PHA = NULL. (745)$$

(e) Graded mode, CTI adjusted:

If

$$DATAMODE_{in} = CC33_GRADED or$$
 (746)

$$DATAMODE_{in} = GRADED, (747)$$

and

$$doevtgrade = yes, and$$
 (748)

$$apply_cti = yes,$$
 (749)

then

i. The initial pulse height adjustment

$$\Delta_y = s_y \rho_y V_y, \tag{750}$$

where s_y is given by equation 614, ρ_y is the parallel trap density associated with CCD_ID, CHIPX_ADJ, and CHIPY_ADJ, and V_y is given by

$$V_y = \left(\frac{\mathtt{PHA_RO} - \mathtt{PHA}_l}{\mathtt{PHA}_{l+1} - \mathtt{PHA}_l}\right) (\mathtt{VOLUME_Y}_{l+1} - \mathtt{VOLUME_Y}_l) + \mathtt{VOLUME_Y}_l \tag{751}$$

(see equation 617).

ii. The approximate energy associated with PHA_RO + Δ_y is given by

$$\begin{split} \mathtt{ENERGY_{approx}} &= \left(\frac{\mathtt{PHA_RO} + \Delta_y - \mathtt{PHA_{gain}}_r[k]}{\mathtt{PHA_{gain}}_r[k+1] - \mathtt{PHA_{gain}}_r[k]}\right) (\mathtt{ENERGY_{gain}}_r[k+1] - \mathtt{ENERGY_{gain}}_r[k]) + \\ &= \mathtt{ENERGY_{gain}}_r[k] \end{aligned}$$

(see equation 806).

iii. The HDU h of the ${\tt grade_image_file}$ is identified such that

$$CCD_ID = CCD_ID_{grdimg,h}, (753)$$

where $\mathtt{CCD_ID}_{\mathtt{grdimg},h}$ is the value of the keyword $\mathtt{CCD_ID}$ in $\mathtt{HDU}\ h$ of the $\mathtt{grade_image_file}$.

- iv. The variable REF_EN is set equal to the value of the keyword of the same name in HDU h of the grade_image_file.
- v. The variable REF_EN is converted to units of eV.

vi. The row r of HDU h of the grade_image_file is identified such that

$$\texttt{FLTGRADE} = \texttt{FLTGRADE}_{\mathrm{grdimg},h,r}, \tag{754}$$

where $\mathtt{FLTGRADE}_{\mathtt{grdimg},h}$ is the column $\mathtt{FLTGRADE}$ in $\mathtt{HDU}\ h$ of the $\mathtt{grade_image_file}$.

vii. The variable

$$ESCL = ESCL_{grdimg,h,r}, (755)$$

where $ESCL_{grdimg,h}$ is the column ESCL in HDU h of the $grade_image_file$.

viii. The array

$$GRDIMG[j] = GRDIMG_{grdimg,h,r}[j], (756)$$

for j = 0-8, where $\mathtt{GRDIMG}_{\mathtt{grdimg},h}$ is the column named \mathtt{GRDIMG} in HDU h of the $\mathtt{grade_-image_file}$.

ix. If

$$GRDIMG[j] < 0, (757)$$

then

$$GRDIMG[j] = 0. (758)$$

x. The fraction of the charge in the outer eight pixels of a 3 pixel \times 3 pixel event island at the energy REF_EN is given by

$$f_{\text{grdimg,ref}} = 1 - \text{GRDIMG}[4].$$
 (759)

xi. If

$$f_{\text{grdimg,ref}} < 0,$$
 (760)

then

$$f_{\text{grdimg,ref}} = 0.$$
 (761)

xii. At the approximate energy ENERGY_{approx}, this fraction is

$$f_{\text{grdimg,approx}} = f_{\text{grdimg,ref}} \left(\frac{\text{ENERGY}_{\text{approx}}}{\text{REF_EN}} \right)^{\text{ESCL}}$$
 (762)

xiii. Perform the following steps (1.5.3.22(e)xiiiA-1.5.3.22(e)xiiiH) three times.

A. For j = 0-3 and j = 5-8 (i.e. for the outer eight pixels of a 3 pixel \times 3 pixel event island),

$$\mathtt{PHAS_ADJ}[j] = \left(\frac{f_{\mathrm{grdimg,approx}}}{f_{\mathrm{grdimg,ref}}}\right) \mathtt{GRDIMG}[j] \left(\mathtt{PHA_RO} + \Delta_y\right). \tag{763}$$

B. For j = 4,

$$PHAS_ADJ[4] = (1 - f_{grdimg,approx}) (PHA_RO + \Delta_y).$$
 (764)

C. For j = 0-8, if

$$PHAS_ADJ[j] \ge \text{ split threshold,} \tag{765}$$

then

$$V_y[j] \quad = \quad \left(\frac{\mathtt{PHAS_ADJ}[j] - \mathtt{PHA}_l}{\mathtt{PHA}_{l+1} - \mathtt{PHA}_l}\right) \left(\mathtt{VOLUME_Y}_{l+1} - \mathtt{VOLUME_Y}_l\right) + \mathtt{VOLUME_Y}_l \quad (766)$$

(see equation 617).

D. For j = 0-8, if

$$PHAS_ADJ[j] < split threshold, (767)$$

then

$$V_y[j] = 0. (768)$$

E. For j = 0-2,

$$V_y[j+6] = V_y[j+6] - V_y[j+3] - V_y[j]. (769)$$

F. For j = 0-2,

$$V_{y}[j+3] = V_{y}[j+3] - V_{y}[j]. (770)$$

G. For j = 0-8, if

$$V_y[j] \quad < \quad 0, \tag{771}$$

then

$$V_y[j] = 0. (772)$$

H. The iterated value of the pulse height adjustment

$$\Delta_y = \sum_{j=0}^8 s_y \rho_y[j] V_y[j], \tag{773}$$

where s_y is given by equation 614, $\rho_y[0] = \rho_y[3] = \rho_y[6]$ is the parallel trap density associated with CCD_ID, CHIPX_ADJ-1, and CHIPY_ADJ, $\rho_y[1] = \rho_y[4] = \rho_y[7]$ is the parallel trap density associated with CCD_ID, CHIPX_ADJ, and CHIPY_ADJ, $\rho_y[2] = \rho_y[5] = \rho_y[8]$ is the parallel trap density associated with CCD_ID, CHIPX_ADJ+1, and CHIPY_ADJ, and $V_y[j]$ is given by equation 766.

xiv. The CTI adjusted pulse height

$$PHA = \min(PHA_RO + \Delta_u), \qquad (774)$$

where nint $(PHA_RO + \Delta_y)$ indicates that $(PHA_RO + \Delta_y)$ is rounded to the nearest integer.

(f) Graded mode, not CTI adjusted:

If

$$DATAMODE_{in} = CC33_GRADED or$$
 (775)

$$DATAMODE_{in} = GRADED, (776)$$

and

$$doevtgrade = yes, and$$
 (777)

$$apply_cti = no,$$
 (778)

$$PHA = PHA_RO_{in}. (779)$$

(g) doevtgrade = no, PHA exists: If

$$doevtgrade = no (780)$$

and HDU $h_{\rm in}$ of the infile includes the column PHA, then

$$PHA = PHA_{in}. (781)$$

(h) doevtgrade = no, PHA missing:

$$doevtgrade = no (782)$$

and HDU $h_{\rm in}$ of the infile does not include the column PHA, then

$$PHA = NULL. (783)$$

(i) If

$$PHA \neq NULL \text{ and}$$
 (784)

$$PHA \geq 32767,$$
 (785)

then STATUS[k] = 1 for bit k = 3 (of 0-31).

- 23. Time-dependent gain:
 - (a) If

$$apply_tgain = yes, (786)$$

then

$$PHA = PHA - int \left[\left(\frac{TIME - EPOCH1}{EPOCH2 - EPOCH1} \right) (\delta_2 - \delta_1) + \delta_1 - \epsilon \right], \tag{787}$$

where

$$TIME = the time of the event, (789)$$

$$EPOCH1 = a \text{ keyword in the tgainfile}, (790)$$

EPOCH2 = a keyword in the tgainfile, (791)

$$\delta_1 = \left(\frac{\mathtt{PHA} - \mathtt{PHA}_m[r]}{\mathtt{PHA}_{m+1}[r] - \mathtt{PHA}_m[r]}\right) \left(\mathtt{DELTPHA1}_{m+1}[r] - \mathtt{DELTPHA1}_m[r]\right) + \tag{792}$$

$$DELTPHA1_{m}[r], (793)$$

 $\begin{cases} r \text{ is the row of the tgainfile where} \\ CCD_ID[r] = CCD_ID, \\ CHIPX_LO[r] \leq \text{nint}(CHIPX_ADJ), \\ CHIPX_HI[r] \geq \text{nint}(CHIPX_ADJ), \\ CHIPY_LO[r] \leq \text{nint}(CHIPY_ADJ), \text{ and} \\ CHIPY_HI[r] \geq \text{nint}(CHIPY_ADJ). \\ m \text{ is the element of row } r \text{ where} \\ \begin{cases} PHA_m[r] \leq PHA \text{ and} \\ PHA_{m+1}[r] > PHA. \\ If PHA < PHA_m[r] \text{ for } m = 0, \text{ then } m = 0. \\ If PHA \geq PHA_m[r] \text{ for } m = M \text{ and } M \text{ is the last element of PHA}[r], \\ \text{then } m = M - 1. \end{cases}$ $The tgainfile includes a binary table with columns named \\ CCD_ID, CHIPX_LO, CHIPX_HI, CHIPY_LO, CHIPY_HI, PHA, DELTPHA1, and DELTPHA2.$

$$\delta_2 = \left(\frac{\text{PHA} - \text{PHA}_m[r]}{\text{PHA}_{m+1}[r] - \text{PHA}_m[r]}\right) \left(\text{DELTPHA2}_{m+1}[r] - \text{DELTPHA2}_m[r]\right) + \tag{795}$$

$$DELTPHA2_{m}[r], (796)$$

$$\epsilon$$
 = is a uniform random deviate in the range [0, 1), (797)

{ If rand_pha = no, then
$$\epsilon = 0$$
. (798)

(b) If

$$PHA \neq NULL \text{ and}$$
 (799)

$$PHA \geq 32767,$$
 (800)

then STATUS[k] = 1 for bit k = 3 (of 0-31).

24. CORN_PHA:

(a) If

$$DATAMODE_{in} = CC33_GRADED,$$
 (801)

then the value of CORN_PHA is read from the infile.

25. ENERGY:

- (a) If the parameter calculate pi = yes and the parameter gainfile is specified and PHA > 0, then
 - i. The row r in the gainfile is identified such that

$$CCD_ID = CCD_ID_{gain,r}, \tag{802}$$

$$CHIPX_MIN_{gain,r} \le nint(CHIPX_ADJ) \le CHIPX_MAX_{gain,r},$$
 and (803)

$$CHIPY_MIN_{gain,r} \le nint(CHIPY_ADJ) \le CHIPY_MAX_{gain,r},$$
(804)

where CCD_ID_{gain} , $CHIPX_MIN_{gain}$, $CHIPX_MAX_{gain}$, $CHIPY_MIN_{gain}$, and $CHIPY_MAX_{gain}$ are columns in the gainfile.

- ii. A uniform random deviate Δp is computed over the interval from [-0.5, +0.5).
- iii. The element k of row r of PHA_{gain} is identified such that

$$PHA_{gain,r}[k] \le (PHA + \Delta p) < PHA_{gain,r}[k+1], \tag{805}$$

where $\mathtt{PHA}_{\mathtt{gain}}$ is a vector column in the $\mathtt{gainfile}$. If $\mathtt{PHA} + \Delta p < \mathtt{PHA}_{\mathtt{gain},r}[0]$, then k=0. If $\mathtt{PHA}_{\mathtt{gain},r}[\mathtt{NPOINTS}-2] \leq \mathtt{PHA} + \Delta p$, then $k=\mathtt{NPOINTS}-2$, where $\mathtt{NPOINTS}$ is a column in the $\mathtt{gainfile}$.

iv. The ENERGY of an event is computed from the PHA of the event:

$$\begin{split} \texttt{ENERGY} &= \left(\frac{\texttt{PHA} + \Delta p - \texttt{PHA}_{\mathrm{gain},r}[k]}{\texttt{PHA}_{\mathrm{gain},r}[k+1] - \texttt{PHA}_{\mathrm{gain},r}[k]}\right) \left(\texttt{ENERGY}_{\mathrm{gain},r}[k+1] - \texttt{ENERGY}_{\mathrm{gain},r}[k]\right) + \\ &= \texttt{ENERGY}_{\mathrm{gain},r}[k], \end{aligned} \tag{806}$$

where ENERGYgain is a vector column in the gainfile.

- v. If ENERGY < 0, then ENERGY = 0.
- (b) If the parameter calculate_pi = yes and the parameter gainfile is specified and PHA ≤ 0 , then ENERGY = 0.
- (c) If the parameter calculate_pi = no or if the parameter gainfile is not specified, then
 - i. If the infile includes the ENERGY of an event, then the ENERGY of the event is equal to the ENERGY in the infile.

ii. If the infile does not include the ENERGY of an event, then ENERGY = 0.

26. PI:

(a) If
$$calculate_pi = yes,$$
 (807)

then

i.

$$PI = int \left(\frac{ENERGY}{pi_bin_width} \right) + 1, \tag{808}$$

where "int" indicates the integer portion of what is in parentheses (i.e. the value is truncated or rounded down).

ii. If

$$PI < 1, \tag{809}$$

then PI = 1.

iii. If

$$PI > pi_num_bins,$$
 (810)

then $PI = pi_num_bins$.

(b) If

$$calculate_pi = no$$
 (811)

and the infile includes the value of PI for an event, then the value of PI is read from the infile.

27. pix_adj:

(a) centroid:

i. If

$$pix_adj = centroid$$
 (812)

and

$$DATAMODE_{in} = CC33_FAINT or$$
 (813)

$$DATAMODE_{in} = FAINT or$$
 (814)

$$DATAMODE_{in} = FAINT_BIAS or$$
 (815)

$$DATAMODE_{in} = VFAINT, (816)$$

then

CHIPX_ADJ = CHIPX_ADJ -
$$w'[0] + w'[2] - w'[3] + w'[5] - w'[6] + w'[8]$$
 and (817)

$$CHIPY_ADJ = CHIPY_ADJ - w'[0] - w'[1] - w'[2] + w'[6] + w'[7] + w'[8],$$
 (818)

$$w'[j] = \frac{w[j]}{\sum_{j=0}^{8} w[j]},$$
(819)

$$w[j] = \begin{cases} p[j] & \text{if the pixel is valid} \\ 0 & \text{if the pixel is invalid,} \end{cases}$$
 (820)

$$p[j] = \begin{cases} \text{PHAS_ADJ}[j] & \text{if apply_cti} = \text{yes} \\ \text{PHAS}[j] & \text{if apply_cti} = \text{no}, \end{cases}$$
 (821)

and the pixel is invalid if

ii. If

$$pix_adj = centroid and$$
 (833)

$$DATAMODE_{in} = CC33_FAINT, (834)$$

then

$$\mathtt{TIME} = \mathtt{TIME} + (w'[0] + w'[1] + w'[2] - w'[6] - w'[7] - w'[8]) \times \mathtt{TIMEDEL_{in}}. \tag{835}$$

Note that it is possible for the centroid algorithm to yield adjustments to CHIPX_ADJ and/or CHIPY_ADJ that are greater than half a pixel. However, the adjustment cannot equal or exceed one pixel.

(b) edser:

i. If

$$pix_adj = edser$$
 (836)

and

$$DATAMODE_{in} = CC33_FAINT or$$
 (837)

$$DATAMODE_{in} = CC33_GRADED or$$
 (838)

$$DATAMODE_{in} = FAINT or$$
 (839)

$$DATAMODE_{in} = FAINT_BIAS or$$
 (840)

$$DATAMODE_{in} = GRADED \text{ or}$$
 (841)

$$DATAMODE_{in} = VFAINT, (842)$$

then

A. If

ENERGY
$$\neq$$
 NaN and (843)

$$ENERGY > 0, (844)$$

$$\texttt{CHIPX_ADJ} \quad = \quad \texttt{CHIPX_ADJ} + \left(\frac{\texttt{ENERGY} - E[k]}{E[k+1] - E[k]}\right) \left(\Delta X[k+1] - \Delta X[k]\right) + \Delta X[k] \\ \texttt{845})$$

and

$$\texttt{CHIPY_ADJ} \quad = \quad \texttt{CHIPY_ADJ} + \left(\frac{\texttt{ENERGY} - E[k]}{E[k+1] - E[k]}\right) \left(\Delta Y[k+1] - \Delta Y[k]\right) + \Delta Y[k] (846)$$

where E[k] and E[k+1], $\Delta X[k]$ and $\Delta X[k+1]$, and $\Delta Y[k]$ and $\Delta Y[k+1]$ are the k and $(k+1)^{th}$ elements of the vector columns <code>ENERGY_{subpix}</code>, <code>CHIPX_OFFSET_{subpix}</code>, and <code>CHIPY_OFFSET_{subpix}</code>, respectively. These columns are in the HDU of the <code>subpixfile</code> where the value of the keyword <code>CCD_ID</code> is equal to the value of the <code>CCD_ID</code> of the event. The appropriate row of these columns is the one where <code>FLTGRADE_{subpix} = FLTGRADE</code>. The values of k are the ones where

ENERGY
$$\geq E[k]$$
 and (847)

ENERGY
$$< E[k+1].$$
 (848)

Note that if

$$ENERGY \leq E[0], \tag{849}$$

then k = 0. Similarly, if

$$ENERGY \geq E[NPOINTS_{subpix} - 2], \tag{850}$$

then $k = \text{NPOINTS}_{\text{subpix}} - 2$.

B. If

$$ENERGY = NaN or (851)$$

$$ENERGY \leq 0, \tag{852}$$

then the CHIPX_ADJ and CHIPY_ADJ coordinates are not modified.

ii. If

$$pix_adj = edser$$
 (853)

and

$$DATAMODE_{in} = CC33_FAINT or$$
 (854)

$$DATAMODE_{in} = CC33_GRADED,$$
 (855)

then

A. If

ENERGY
$$\neq$$
 NaN and (856)

$$ENERGY > 0, (857)$$

then

$$\text{TIME} \quad = \quad \text{TIME} - \left(\left(\frac{\text{ENERGY} - E[k]}{E[k+1] - E[k]} \right) \left(\Delta Y[k+1] - \Delta Y[k] \right) + \Delta Y[k] \right) \times \\ \text{TIMEDE(858)}$$

B. If

$$ENERGY = NaN or (859)$$

$$ENERGY \leq 0, \tag{860}$$

then the TIME is not modified.

(c) none:

If

$$pix_adj = none,$$
 (861)

then

$$CHIPX_ADJ = CHIPX_ADJ$$
and (862)

$$CHIPY_ADJ = CHIPY_ADJ$$
and (863)

$$TIME = TIME. (864)$$

No sub-pixel adjustments are applied to the values of CHIPX_ADJ and CHIPY_ADJ (for timed exposure mode) or CHIPX_ADJ and TIME (for continuous-clocking mode).

(d) randomize:

i. If

$$pix_adj = randomize,$$
 (865)

then

$$CHIPX_ADJ = CHIPX_ADJ + \epsilon_x \text{ and}$$
 (866)

$$CHIPY_ADJ = CHIPY_ADJ + \epsilon_y, \tag{867}$$

where ϵ_x and ϵ_y are a uniform random deviates in the range [-0.5, +0.5) pixel.

ii. If

$$DATAMODE_{in} = CC33_FAINT or$$
 (868)

$$DATAMODE_{in} = CC33_GRADED, (869)$$

then

$$TIME = TIME - \epsilon_y \times TIMEDEL_{in}. \tag{870}$$

(e) If

$$CHIPX_ADJ < 0.5, (871)$$

then

$$CHIPX_ADJ = 1. (872)$$

(f) If

$$CHIPX_ADJ \geq 1024.5, \tag{873}$$

then

$$CHIPX_ADJ = 1024.$$
 (874)

(g) If

$$CHIPY_ADJ < 0.5, (875)$$

$$CHIPY_ADJ = 1. (876)$$

(h) If

$$CHIPY_ADJ \ge 1024.5,$$
 (877)

 $\quad \text{then} \quad$

$$CHIPY_ADJ = 1024.$$
 (878)

28. X and Y:

(a) If

$$stop = sky, (879)$$

then

i. If

$$DATAMODE_{in} = FAINT or$$
 (880)

$$DATAMODE_{in} = FAINT_BIAS or$$
 (881)

$$DATAMODE_{in} = GRADED \text{ or}$$
 (882)

$$DATAMODE_{in} = VFAINT, (883)$$

then the values of X and Y are computed using the real-valued coordinates CHIPX_ADJ and CHIPY_ADJ and the orientation of the telescope (i.e. RA, DEC, and ROLL) at the time TIME.

ii. If

$$DATAMODE_{in} = CC33_FAINT or$$
 (884)

$$DATAMODE_{in} = CC33_GRADED,$$
 (885)

then the values of X and Y are computed using the real-valued coordinates CHIPX_ADJ and CHIPY_TARG_{eff} and the orientation of the telescope (i.e. RA, DEC, and ROLL) at the time TIME.

iii. If

acaofffile
$$\neq$$
 none (886)

and

$$CONTENT_{in} \neq TGEVT1$$
 (887)

and

$$TIME < TIME_{min} or (888)$$

$$TIME \geq TIME_{max},$$
 (889)

then

$$X = \text{NaN and}$$
 (890)

$$Y = NaN. (891)$$

iv. If

acaofffile
$$\neq$$
 none (892)

and

$$CONTENT_{in} = TGEVT1 \text{ and}$$
 (893)

$$CHIPY_TG = NaN, (894)$$

then

$$X = \text{NaN and}$$
 (895)

$$Y = NaN. (896)$$

 $29. \text{ SKY_1D}:$

(a) If

$$stop = sky (897)$$

and

$$DATAMODE_{in} = CC33_FAINT or$$
 (898)

$$DATAMODE_{in} = CC33_GRADED, (899)$$

then

- i. The value of SKY_1D is computed using the real-valued coordinates CHIPX_ADJ and CHIPY_TARG $_{
 m eff}$ and the orientation of the telescope (i.e. RA, DEC, and ROLL) at the time TIME.
- ii. If

acaofffile
$$\neq$$
 none (900)

and

$$CONTENT_{in} \neq TGEVT1 \tag{901}$$

and

$$TIME < TIME_{min} or (902)$$

$$\mathtt{TIME} \ \geq \ \mathtt{TIME}_{\mathrm{max}}, \tag{903}$$

then

$$SKY_1D = NaN. (904)$$

iii. If

acaofffile
$$\neq$$
 none (905)

and

$$CONTENT_{in} = TGEVT1 \text{ and}$$
 (906)

$$CHIPY_TG = NaN, (907)$$

then

$$SKY_1D = NaN. (908)$$

30. DETX and DETY:

(a) If

$$stop = det or (909)$$

$$stop = tan or (910)$$

$$stop = sky, (911)$$

then

i. The values of DETX and DETY are computed using the real-valued coordinates CHIPX_ADJ and CHIPY_ADJ and the orientation of the SIM (i.e. DY, DZ, and DTHETA) at the time TIME.

ii. If

acaofffile
$$\neq$$
 none (912)

and

$$CONTENT_{in} \neq TGEVT1 (913)$$

and

$$TIME < TIME_{min} \text{ or}$$
 (914)

$$TIME \geq TIME_{max},$$
 (915)

then

$$DETX = NaN \text{ and}$$
 (916)

$$DETY = NaN. (917)$$

iii. If

acaofffile
$$\neq$$
 none (918)

and

$$CONTENT_{in} = TGEVT1 \text{ and}$$
 (919)

$$CHIPY_TG = NaN, (920)$$

then

$$DETX = NaN \text{ and}$$
 (921)

$$DETY = NaN. (922)$$

31. TDETX and TDETY:

(a) If

$$stop = tdet or (923)$$

$$stop = det or (924)$$

$$stop = tan or (925)$$

$$stop = sky (926)$$

then

i. The values of TDETX and TDETY are computed using the values of nint(CHIPX_ADJ) and nint(CHIPY_ADJ). Here, "nint" indicates that the real-valued coordinate is rounded to the nearest integer.

ii. If

acaofffile \neq none (927)

and

$$DATAMODE_{in} = CC33_FAINT or (928)$$

$$DATAMODE_{in} = CC33_GRADED (929)$$

and

$$CONTENT_{in} \neq TGEVT1 (930)$$

and

$$TIME < TIME_{min} or (931)$$

$$TIME \geq TIME_{max},$$
 (932)

then

$$TDETX = NULL \text{ and}$$
 (933)

$$TDETY = NULL.$$
 (934)

iii. If

acaofffile
$$\neq$$
 none (935)

and

$$DATAMODE_{in} = CC33_FAINT or (936)$$

$$DATAMODE_{in} = CC33_GRADED (937)$$

and

$$CONTENT_{in} = TGEVT1 \text{ and}$$
 (938)

$$CHIPY_TG = NaN, (939)$$

then

$$TDETX = NULL \text{ and}$$
 (940)

$$TDETY = NULL.$$
 (941)

1.5.4 Write outfile

1. Unexpected CHIPX values:

If the counter associated with equations 202 and 203 is greater than zero, then acis_process_events produces a warning message that includes the number of events that have unexpected CHIPX values.

2. Unexpected CHIPY values:

If the counter associated with equations 228 and 229 is greater than zero, then acis_process_events produces a warning message that includes the number of events that have unexpected CHIPY values.

3. PIX_ADJ:

(a) If (942) $pix_adj = centroid,$ then $PIX_ADJ = CENTROID.$ (943)(b) If $pix_adj = edser,$ (944)then ${\tt PIX_ADJ} \ = \ {\tt EDSER}.$ (945)(c) If (946) $pix_adj = none,$ then $PIX_ADJ = NONE.$ (947)(d) If $pix_adj = randomize,$ (948)then $PIX_ADJ = RANDOMIZE.$ (949)4. RAND_SKY: (a) If pix_adj = centroid, (950)then $RAND_SKY = 0.0.$ (951)(b) If $pix_adj = edser,$ (952)then ${\tt RAND_SKY} \ = \ 0.0.$ (953)(c) If pix_adj = none, (954)then $RAND_SKY = 0.0.$ (955) (d) If

$$pix_adj = randomize,$$
 (956)

then

$$RAND_SKY = 0.5. (957)$$

5. TIME_ADJ:

(a) Timed-exposure mode:

If

$$DATAMODE_{in} = FAINT or (958)$$

$$DATAMODE_{in} = FAINT_BIAS or (959)$$

$$DATAMODE_{in} = GRADED or (960)$$

$$DATAMODE_{in} = VFAINT, (961)$$

then

$$TIME_ADJ = NONE.$$
 (962)

(b) Continuous-clocking mode:

i. Set

$$TIME_ADJ = MIDCHIP.$$
 (963)

ii. If

$$OBS_MODE_{in} = pointing and$$
 (964)

acaofffile
$$\neq$$
 none (965)

then

$$TIME_ADJ = TARGET.$$
 (966)

iii. If

$$OBS_MODE_{in} = pointing and$$
 (967)

$$CONTENT_{in} = TGEVT1, (968)$$

then

$$TIME_ADJ = GRATING. (969)$$

2 TBD

- Add the graded mode cti adjustment.
- Include all timed exposure mode processing.
- \bullet Should CONTENTs other than EVT0, EVT1, TGEVT1, and EVT2 be included?
- Should CONTENT = EVT2 be dropped?
- Should DATAMODEs other than CC33_FAINT, CC33_GRADED, FAINT, FAINT_BIAS, GRADED, and VFAINT be included?
- Are the β in PHA_RO the same as the β in PHA?
- Should something be done about SKY_1D?