

Chandra X-ray Center

Memo: Generalize the temperature dependence of CTI in CALDB CTI files and acis_process_events

Revision 1.0—09 Mar 2023

version	author
1.0	H. M. Günther

To: Jonathan McDowell, SDS Group Leader Janet DePonte Evans, DS Software Development Manager Dale Graessele, CALDB manager

_

Document and Change Control Log							
Date	Status						
09 Mar 2023	1.0.0	all	Initial version				

Contents

1	Summary	1							
2	 Motivation 2.1 The need to generalize the existing mechanism for CTI temperature dependence in acis_process_e 2.2 Urgency								
3	Scope 3.1 Scope of applicability 3.2 Scope of this memo	2 2 2							
4	Applicable Documents	2							
5	CALDB format and acis_process_events implementation 5.1 Temperature dependence in CTI in CIAO 4.15	2 2							
	 5.2 Required changes	$ \frac{2}{4} 4 5 5 $							

1 Summary

In the future, ACIS will have to be operated over a wider temperature range than it currently is. CTI is highly temperature dependent and the current parameterization is unable to describe this to sufficient accuracy.

This memo presents a scheme to accommodate this with minimal changes to existing CALDB formats and the existing acis_process_events implementation. It sets out background and motivation and a spec for the **changes** that are required; it does not replace existing ICDs and specs; instead, the changes described will have to be incorporated into those existing documents.

The changes involve three additional columns in the CTI file, and an additional, third, image dimension to the CTLIMAGE files, together with I/O changes to acis_process_events to handle these changes and pass on the relevant data subset to the existing, unchanged, algorithm.

Motivation $\mathbf{2}$

The Chandra X-ray Observatory (CXO) is aging, and thermal management is becoming a more and more difficult task for mission operations. Observations longer than 20 or 30 ks are already rare, and, without raising the allowed temperature for the ACIS focal plane, observations will have to become even shorter. This places severe constraints on mission planning, but also limits certain science cases that would benefit from longer uninterrupted observations. Observations with the gratings are already allowed to be executed at higher temperatures than ever before, but the vast majority of observations with Chandra are done with ACIS for imaging. Thus, changing the allowed temperature range for ACIS imaging observations would have a much bigger positive impact on mission planning; it might in fact be required in the future to do any observations at all in certain regions of the sky.

There is one major hurdle: CTI is strongly temperature dependent. CTI effects come into play in at least two areas of data processing: First, CTI moves the centroids of the distribution of PHA values observed for any given energy and this effect is corrected for in acis_process_events; second, CTI broadens the distributions, which is represented in the RMF, and thus needs to be taken into account in mkacisrmf.

The first effect is more severe from an analysis standpoint, because it leads to a systematic offset in energy, while a little broadening of the RMF in ACIS data that's already low-resolution has less of an effect in many scenarios. Also, acis_process_events is run in pipeline processing and thus needs to be addressed for both DS and CIAO releases. This memo only addresses changes to acis_process_events and related CALDB files; any changes to mkacisrmf are developed separately.

$\mathbf{2.1}$ The need to generalize the existing mechanism for CTI temperature dependence in acis_process_events

acis_process_events already includes a temperature dependence of the CTI encoded in the \$CALDB/data/chandra/acis/cti/* files (see 4). These files contain coefficients to describe a temperature dependence for some parts of the mathematical equation used to correct for CTI (these equations are given Ref. 3 and implemented in acis_process_events in the current version CIAO 4.15). However, this scheme was designed to work for a relatively narrow range of temperatures. Initial calibration observations at higher temperatures show that this is insufficient to describe the behavior of CTI over the wider range of temperature currently forseen by mission planning and the calibration group (see presentations to the ACIS calibration group in Jan, Feb, and March of 2023).

2.2Urgency

The decaying thermal performance makes scheduling observations more and more difficult already; on the other hand, we cannot deliver data to observers that cannot be reduced and analyzed with the available DS and CIAO versions. Thus, observations at higher temperatures should not be done before the required changes are implemented in the DS pipeline and CIAO. According to mission planning, this needs becomes more and more pressing and we may out significant constraints on scheduling flexibility, if we delay this to the DS or CIAO releases in mid- and late 2024.

3 Scope

3.1 Scope of applicability

This interface shall apply to all ACIS observations as processed by the tool acis_process_events and distributed to the CXC Data Archive during the course of the Chandra mission.

3.2 Scope of this memo

This memo describes a small and specific change to acis_process_events (see 1 for the acis_process_events spec and refs 2 and 3 for the CTI equations in particular). The acis_process_events spec (Ref. 1) is a massive collection of formulas, which makes it hard to understand the intent of individual changes, which is why we describe it here in a separate memo. The CTI formula in acis_process_events is described in Ref. 2, last updated in Ref. 3. That formula remains unchanged, what changes is how the coefficients used in that formula are loaded from the CTI files in the CALDB.

4 Applicable Documents

The Applicable Documents required for background and detail are as follows:

- 1. acis_process_events spec: https://space.mit.edu/cxc/docs/ape_spec_4.17.pdf
- 2. memo: Adjusting ACIS Event Data to Compensate for the CTI; version 7.2 https://space.mit.edu/ CXC/docs/html#cti
- 3. memo: Adjusting ACIS Event Data to Compensate for the CTI; version 7.3 (distributed by email by D. Principe in 2018)
- 4. AXAF CALDB Architecture https://cxc.cfa.harvard.edu/caldb/index.html

5 CALDB format and acis_process_events implementation

5.1 Temperature dependence in CTI in CIAO 4.15

Thetemperaturedependenceisencodedinthe\$CALDB/data/chandra/acis/cti/*files in the CALDB. These files have the following structure:

dmlist acisD2020-01-01ctiN0009.fits blocks

Dataset: acisD2020-01-01ctiN0009.fits _____ Block Name Type Dimensions _____ ___ ------1: PRIMARY Null Block Block 2: AXAF_CTI1 Table 21 cols x 10 rows 3: AXAF_PCTI_IMAGEO Real4(1024x1024) Block Image Block 4: AXAF_PCTI_IMAGE1 Image Real4(1024x1024)

Block	5:	AXAF_PCTI_IMAGE2	Image	Real4(1024x1024)
Block	6:	AXAF_PCTI_IMAGE3	Image	Real4(1024x1024)
Block	7:	AXAF_PCTI_IMAGE4	Image	Real4(1024x1024)
Block	8:	AXAF_SCTI_IMAGEO	Image	Real4(1024x1024)
Block	9:	AXAF_PCTI_IMAGE5	Image	Real4(1024x1024)
Block	10:	AXAF_PCTI_IMAGE6	Image	Real4(1024x1024)
Block	11:	AXAF_SCTI_IMAGE1	Image	Real4(1024x1024)
Block	12:	AXAF_PCTI_IMAGE7	Image	Real4(1024x1024)
Block	13:	AXAF_PCTI_IMAGE8	Image	Real4(1024x1024)
Block	14:	AXAF_PCTI_IMAGE9	Image	Real4(1024x1024)

The first relevant block is the table in block 2 which has the following columns:

dmlist acisD2020-01-01ctiN0009.fits cols

Column	s for Table Block	AXAF_CTI1			
ColNo	Name	Unit	Туре	Range	
1	CCD_ID		Int2	-	The ID number of the CCD of a region
2	CHIPX_LO	pixel	Int2	-	The lower CHIPX boundary of the region
3	CHIPX_HI	pixel	Int2	-	The upper CHIPX boundary of the region
4	CHIPY_LO	pixel	Int2	-	The lower CHIPY boundary of the region
5	CHIPY_HI	pixel	Int2	-	The upper CHIPY boundary of the region
6	NPOINTS		Int2	-	The number of PHA elements for the region
7	PHA [46]	adu	Real4(46)	-Inf:+Inf	The PHA vector for the region
8	VOLUME_X[46]		Real4(46)	-Inf:+Inf	The effective charge volume for serial CTI
9	VOLUME_Y[46]		Real4(46)	-Inf:+Inf	The effective charge volume for parallel CTI
10	FRCTRLX		Real4	-Inf:+Inf	Fraction of charge trailed one pixel (serial)
11	FRCTRLY		Real4	-Inf:+Inf	Fraction of charge trailed one pixel (parallel)
12	VFTRLX		Real4	-Inf:+Inf	Fraction of charge trailed two pixels (serial)
13	VFTRLY		Real4	-Inf:+Inf	Fraction of charge trailed two pixels (parallel
14	TCTIX		Real4	-Inf:+Inf	Frac. change in serial trap density per deg C
15	TCTIY		Real4	-Inf:+Inf	Frac. change in parallel trap density per deg C
16	TCTIX2		Real4	-Inf:+Inf	Frac. change in serial trap density per deg C
17	TCTIX3		Real4	-Inf:+Inf	Frac. change in serial trap density per deg C
18	TCTIX4		Real4	-Inf:+Inf	Frac. change in serial trap density per deg C
19	TCTIY2		Real4	-Inf:+Inf	Frac. change in parallel trap density per deg C
20	TCTIY3		Real4	-Inf:+Inf	Frac. change in parallel trap density per deg C
21	TCTIY4		Real4	-Inf:+Inf	Frac. change in parallel trap density per deg C

The CTI correction formula depends on the chip, the location, the PHA value, and the AXIS focal plane temperature at the time that a particular photon is detected. That temperature changes during an observation and is taken from the Mission time-line file (see 3). The rows in the table contain coefficients for the CTI correction (see 3) and acis_process_events needs to select the appropriate row for each detected photon and then use the coefficients in that particular row to evaluate the CTI correction formula. Column 1-5 are used for the selection; the remaining columns hold the information for the CTI correction formula (collectively called "coefficients" for simplicity in the remainder of this text). In the CALDB distributed with CIAO 4.15, columns 1-5 look like this:

dmlist acisD2020-01-01ctiN0009.fits"[cols CCD_ID,CHIPX_LO,CHIPX_HI,CHIPY_LO,CHIPY_HI]" data

Data for Table Block AXAF_CTI1 ROW CCD_ID CHIPX_LO CHIPX_HI CHIPY_LO CHIPY_HI 1 0 1 1024 1 1024

2	1	1	1024	1	1024
3	2	1	1024	1	1024
4	3	1	1024	1	1024
5	4	1	1024	1	1024
6	5	1	1024	1	1024
7	6	1	1024	1	1024
8	7	1	1024	1	1024
9	8	1	1024	1	1024
10	9	1	1024	1	1024

So, if acis_process_events processes a photon detected on CCD_ID=4, at CHIP_X=345 and CHIP_Y=876 at a focal plane temperature of FP_TEMP=-119.6 C=153.55 K, then it uses the coefficients found in row 5.

The remaining blocks in the CALDB file contain the serial (not available for all CCDs) and parallel trap maps. In the example above with CCD_ID=4, the extension AXAF_PCTI_IMAGE4 would be used.

5.2 Required changes

In order to describe the strong changes in temperature, both the format of the CALDB file and the processing in acis_process_events have to be changed; however, the changes are relatively minor: The new CTI correction will use the same formulas and equations; it is just that the coefficients are now valid only for a specific temperature range and, when acis_process_events selects the row with coefficients, it now needs to select on CCD_ID, CHIP_X, CHIP_Y, and temperature.

5.2.1 Changes to the CTI files in the CALDB

The block AXAF_CTI will gain three more columns:

- name: TEMP_LO type: Real4 Range 0:+Inf unit: K (degrees Kelvin) comment: The lower TEMP boundary where this row is valid
- 2. name: TEMP_HI type: Real4 Range 0:+Inf unit: K (degrees Kelvin) comment: The upper TEMP boundary where this row is valid
- anme: TEMP_IND
 type: Int2
 Range comment: Index for third dimension in trap map

The columns in the table used to select the relevant row might look like this (abbreviated example):

Data for Table Block AXAF_CTI1 									
ROW	CCD_ID	CHIPX_I	.0	CHIPX_HI	CHIPY_LO	CHIPY_HI	TEMP_LO	TEMP_HI	TEMP_IND
	1	0	1	1024	1	1024	148	180	1
	2	1	1	1024	1	1024	151	154	1
	3	1	1	1024	1	1024	154	157	2
	4	1	1	1024	1	1024	157	159.5	3
	5	1	1	1024	1	1024	159.5	165	4

The trap maps (fits file extensions $AXAF_{S/P}CTI_IMAGE{I}$, where S/P identifies serial or parallel CTI, and I is the chip ID) do also depend on temperature. So, their format will be changed to Real4(1024x1024xN) where N can be different for each block. This represents trap maps at different temperatures; the layer is selected by the TEMP_IND column. For a particular CCD, if there is only one trap map for a large range of FP_TEMP available (e.g., the current state of ACIS calibration) then there will only be one TEMP_IND and the value will be equal to 1.

5.2.2 Changes to acis_process_events

The equations in acis_process_events that use the CTI coefficients or trap maps do not change. However, the appropriate row in the CTI table is now selected on CCD_ID, CHIP_X, and CHIP_Y as before, but also as TEMP_LO \leq FP_TEMP < TEMP_HI, where FP_TEMP is the temperature of the focal plane at the time that that particular photon was detected (as recorded in the MTL file). Instead of using the 2D trap map from the appropriate extension, acis_process_events selects a 2D slice from the 3-dimensional Real4(1024x1024xN) trap map in that extension. The index for the third dimension is given in TEMP_IND. (Note that we define TEMP_IND with one-based indexing. Depending on the implementation language used in acis_process_events, this might have to be translated to zero-based indexing, i.e. the 2D array chosen for a particular photon would be arr[:, :, TEMP_IND - 1].)

In the example above, every photon with CCD_ID=0 will be processed with the coefficients in row 1, but photons on CCD_ID=1 will be processed with coefficient taken from different rows depending on their temperature. A photon with CCD_ID=1 and FP_TEMP=-115.34 C=157.81 K would use the coefficients from row 4. The trap map used will be from block AXAF_PCTI_IMAGE2, selecting layer 3 from the array, i.e. arr[:, :, 3].

For backwards compatibility, acis_process_events shall make the following assumptions:

- If the new columns are not present, temperature is not used in the column selection.
- In that case, acis_process_events shall expect the image extension to have the format Real4(1024x1024) as in CIAO 4.15 and use that trap map as in CIAO 4.15.

5.3 Rationale

This design of the new CTI files does not require the addition of any new files to the CALDB. The temperature range over which a specific set of coefficients is valid can be different by CCD as required by the calibration. In practice, the CCDs used for imaging are likely to be calibrated in smaller temperature bins because the CTI correction is more important for the analysis of imaging observations and more calibration data become available. The changes given here allow for gradual updates of the CALDB as more calibration information is available. Initially, the file can be kept to reproduce the CTI in CIAO 4.15 exactly, simply by having just one row per CCD with settings for TEMP_LO and TEMP_HI that include all temperatures that the ACIS focal plan ever had.

This format is also flexible enough that future changes of the CTI correction can be expressed in this scheme. The CTI correction already implemented in acis_process_events (see Ref 3) is a polynomial in temperature. Since any function can be approximated by a polynamial function for small temperature intervals, it is always possible to express any temperature dependence simply by creating many rows in the table and using the already implemented CTI correction as approximation to a more complex function. In that sense, this format is future-proof, even if the needs of the calibration change.

5.4 Backwards and forwards compatibility

The changes are designed to be backwards compatible; a newer version of acis_process_events will work with existing CALDB versions, but changes versions of the CALDB would require an updated version of acis_process_events in the next DS or CIAO release.