

Chandra X-Ray Center

MEMORANDUM

June 9, 2003

To: Martin Elvis, SDS Group Leader

From: Glenn E. Allen, SDS

Subject: Applying a Time-Dependent Gain Adjustment

Revision: 1.2

URL: http://space.mit.edu/CXC/docs/docs.html#tgain_spec

File: /nfs/cxc/h2/gea/sds/docs/memos/memo_apply_tgain_1.2.tex

1 acis_process_events

1.1 Description

The continuous exposure of the ACIS CCDs to particle radiation causes a steady increase in the charge-transfer inefficiency (CTI) of the detectors. As a result, the typical pulse height recorded for an X-ray of a given energy is declining with time. This kind of change in the "gain" of the detectors and a change in the electronic gain of the ACIS-I1 CCD is calibrated (for CTI-adjusted data) and recorded in a set of "t_gain" ARD files. This document describes how the information in these files is used by acis_process_events to apply a time-dependent gain adjustment to ACIS event data. The time-dependent gain adjustment is applied after the CTI adjustment because the gain adjustment is calibrated using CTI-adjusted data.

1.2 Input

- 1. A Level 0, 1, 1.5, or 2 event data file (acis*evt0.fits, acis*evt1.fits, acis*evt1a.fits, or acis*evt2.fits)
- 2. A "t_gain" ARD file (e.g. acis D2001-05-01t_gain
N0001.fits) $\,$

1.3 Output

1. An event data file

1.4 Parameters

- $1. \ \ tgainfile, s, h, "CALDB", ,,, "Name of input gain adjustment file (\langle filename \rangle --- CALDB --- none --- NONE)"$
- 2. apply_tgain,b,h,yes,,,"Apply time-dependent gain adjustment?"

1.5 Processing

- 1. Verify that the specified input files exist. If the parameter clobber = "no," then verify that the output file does not exist. If apply_tgain = "yes" and tgainfile = "none" or "NONE" (or does not exist), then write a warning message that the time-dependent gain adjustment is not being applied because a valid calibration file is not specified.
- 2. For each event i in the input event data file, find the row r in the t_gain ARD file that satisfies all three of the conditions

$$CCD_ID_r = ccd_id_i \tag{1}$$

$$CHIPX_LO_r \le chipx_i \le CHIPX_HI_r$$
, and (2)

$$CHIPY_LO_r \le chipy_i \le CHIPY_HI_r, \tag{3}$$

where ccd_id, chipx and chipy are the names of columns in the event data file and CCD_ID, CHIPX_LO, CHIPX_HI, CHIPY_LO and CHIPY_HI are the names of columns in the ARD file. ccd_id_i , $chipx_i$ and $chipy_i$ are the values of ccd_id , chipx and chipy for event i. CCD_ID_r , $CHIPX_LO_r$, $CHIPX_HI_r$, $CHIPY_LO_r$ and $CHIPY_HI_r$ are the values of CCD_ID , $CHIPX_LO$, $CHIPX_HI$, $CHIPY_LO$ and $CHIPY_HI$ for row r of the t_gain ARD file.

3. The values in the columns PHA, DELTPHA1 and DELTPHA2 for row r of the ARD file are used to compute the adjustment to the value of pha for event i. These three columns are vector columns. The number of valid elements in each column for row r is specified by NPOINTS, where NPOINTS is the name of a column in the ARD file. If the number of elements in the vectors PHA, DELTPHA1, and DELTPHA2, is greater than NPOINTS, then the ends of the vectors are padded with zeroes.

The appropriate element n of the vector PHA_r is determined by using the condition

$$PHA_r[n] \le pha_i < PHA_r[n+1]. \tag{4}$$

Here, the first and last elements of the vector PHA_r are denoted $PHA_r[1]$ and $PHA_r[NPOINTS_r]$, respectively. If $pha_i < PHA_r[1]$, then n = 1. If $pha_i \ge PHA_r[NPOINTS_r]$, then $n = NPOINTS_r - 1$ (not $NPOINTS_r$).

The value of pha_i is the pulse height of event i in the event data file. If the CTI adjustment is performed, then pha_i is the CTI-adjusted pulse height. (The CTI adjustment is performed before the time-dependent gain adjustment.) For GRADED mode observations, pha_i can be either pha_i or pha_i (see Tables 1 and 2).

4. The adjustment to the value of pha_i at t = EPOCH1 is computed by performing a linear interpolation (or extrapolation) of the values in the vector DELTPHA1_r:

$$\Delta \text{pha1} = \frac{\text{pha}_i - \text{PHA}_r[n]}{\text{PHA}_r[n+1] - \text{PHA}_r[n]} \left(\text{DELTPHA1}_r[n+1] - \text{DELTPHA1}_r[n] \right) + \\ \text{DELTPHA1}_r[n].$$
 (5)

For GRADED mode observations, pha_i can be either pha_i or pha_ro_i (see Tables 1 and 2). EPOCH1 (and EPOCH2) are the names of keywords in the header of the t_gain file.

5. If EPOCH2 > EPOCH1 and DELTPHA2_r[NPOINTS_r] > 0, then the estimate of the adjustment to the value of pha_i at t = EPOCH2 is

$$\Delta pha2 = \frac{pha_i - PHA_r[n]}{PHA_r[n+1] - PHA_r[n]} (DELTPHA2_r[n+1] - DELTPHA2_r[n]) + DELTPHA2_r[n].$$
(6)

For GRADED mode observations, pha_i can be either pha_i or pha_ro_i (see Tables 1 and 2).

If EPOCH2 \leq EPOCH1 or DELTPHA2_r[NPOINTS_r] \leq 0, then

$$\Delta \text{pha2} = \Delta \text{pha1} \text{ and}$$
 (7)

$$EPOCH2 = EPOCH1 + 10^7 \text{ s.}$$
(8)

6. The pulse height adjustment at $t = time_i$ is

$$\Delta pha = \frac{time_i - EPOCH1}{EPOCH2 - EPOCH1} (\Delta pha2 - \Delta pha1) + \Delta pha1, \tag{9}$$

where $time_i$ is the time associated with event i.

7. The adjusted value of the pulse height for event i is i

$$pha_i' = pha_i + \Delta pha + a, \tag{10}$$

where a is a uniform random deviate in the range [-0.5, +0.5) adu. If $pha'_i > 32760$, then $pha'_i = 32760$.

- 8. Steps 2 to 7 are performed for every event in the input file.
- 9. The values of pha'_i (instead of pha_i) are written to the output file¹.
- 10. The name of the t_gain ARD file used is written to the keyword TGAINFIL and the value of the keyword TGAINCOR is set to "T" $(True)^1$.

¹The content of the output file is contingent on several input conditions. See Tables 1 and 2 for the details.

Table 1. Input Conditions

	Table 1. Input Conditions							
	Parameter	Parameter	$\operatorname{Keyword}$	$\mathbf{Keyword}$	Column			
Case	apply_tgain	doevtgrade	TGAINCOR	$\mathrm{DATAMODE}^a$	PHA_RO			
1	yes	yes	F/missing	not GRADED	doesn't exist			
2	yes	yes	F/missing	$\operatorname{not}\ \operatorname{GRADED}$	${ m exists}$			
3	yes	yes	F/missing	GRADED	doesn't exist			
4	yes	yes	F/missing	GRADED	${ m exists}$			
5	yes	yes	${f T}$	not GRADED	doesn't exist			
6	yes	yes	${f T}$	$\operatorname{not}\ \operatorname{GRADED}$	${ m exists}$			
7	yes	yes	${f T}$	GRADED	doesn't exist			
8	yes	yes	${ m T}$	GRADED	${ m exists}$			
9	yes	no	F/missing	not GRADED	doesn't exist			
10	yes	no	F/missing	$\operatorname{not}\ \operatorname{GRADED}$	${ m exists}$			
11	yes	no	F/missing	GRADED	doesn't exist			
12	yes	no	F/missing	GRADED	${ m exists}$			
13	yes	no	${f T}$	$\operatorname{not}\ \operatorname{GRADED}$	doesn't exist			
14	yes	no	${f T}$	$\operatorname{not}\ \operatorname{GRADED}$	${ m exists}$			
15	yes	no	${f T}$	GRADED	doesn't exist			
16	yes	no	${ m T}$	GRADED	\mathbf{exists}			
17	no	yes	F/missing	$\operatorname{not}\ \operatorname{GRADED}$	doesn't exist			
18	no	yes	F/missing	not GRADED	${ m exists}$			
19	no	yes	F/missing	GRADED	doesn't exist			
20	no	yes	F/missing	GRADED	${ m exists}$			
21	no	yes	${f T}$	$\operatorname{not}\ \operatorname{GRADED}$	doesn't exist			
22	no	yes	${f T}$	$\operatorname{not}\ \operatorname{GRADED}$	${ m exists}$			
23	no	yes	${f T}$	GRADED	doesn't exist			
24	no	yes	${f T}$	GRADED	${ m exists}$			
25	no	no	F/missing	$\operatorname{not}\ \operatorname{GRADED}$	doesn't exist			
26	no	no	F/missing	$\operatorname{not}\ \operatorname{GRADED}$	${ m exists}$			
27	no	no	F/missing	GRADED	doesn't exist			
28	no	no	F/missing	GRADED	${ m exists}$			
29	no	$_{ m no}$	${f T}$	not GRADED	doesn't exist			
30	no	$_{ m no}$	${f T}$	not GRADED	${ m exists}$			
31	no	$_{ m no}$	${f T}$	GRADED	doesn't exist			
32	no DATAMODE	no	Т	GRADED	exists			

^a The DATAMODEs "GRADED," "GRADED_HISTO," "CC_GRADED," and "CC33_GRADED" are collectively referred to as GRADED.

Table 2. Output

	Column	Column	Keyword	Keyword	
Case	PHA	PHA_RO	TGAINCOR	TGAINFIL	Notes
1	$\mathrm{Adjust}\;\mathrm{PHA}^a$	Unadjusted PHA^b	Τ	$\langle t_gain \rangle$	SDP
2	$\mathrm{Adjust} \; \mathrm{PHA}^a$	Unadjusted PHA^b	${ m T}$	$\langle { m t_gain} angle$	Recompute PHA and tgai
3	Adjust PHA	Unadjusted PHA	${ m T}$	$\langle { m t_gain} angle$	SDP
4	$Adjust PHA_RO^c$	Input PHA_RO	${ m T}$	$\langle { m t_gain} angle$	Compute tgain only
5	$\mathrm{Adjust} \; \mathrm{PHA}^a$	Unadjusted PHA^b	${ m T}$	$\langle { m t_gain} angle$	Recompute PHA and tgai
6	$\mathrm{Adjust} \; \mathrm{PHA}^a$	Unadjusted PHA^b	${ m T}$	$\langle { m t_gain} \rangle$	Recompute PHA and tgain
7	Don't $adjust^d$	${f Zero}$	${f T}$	Copy^f	Error
8	$Adjust PHA_RO^c$	Input PHA_RO	${ m T}$	$\langle { m t_gain} \rangle$	Compute tgain only
9	$\mathrm{Adjust}\;\mathrm{PHA}^e$	Input PHA	${ m T}$	$\langle { m t_gain} angle$	Compute tgain only
10	$Adjust PHA_RO^c$	Input PHA_RO	${ m T}$	$\langle { m t_gain} angle$	Compute tgain only
11	$\mathrm{Adjust}\ \mathrm{PHA}^e$	${ m Zero}$	${ m T}$	$\langle \mathrm{t_gain} \rangle$	Compute tgain only
12	$Adjust PHA_RO^c$	Input PHA_RO	${ m T}$	$\langle \mathrm{t_gain} \rangle$	Compute tgain only
13	Don't $adjust^d$	Input PHA_RO	${ m T}$	Copy	Don't apply twice
14	$Adjust PHA_RO^c$	Input PHA_RO	${ m T}$	$\langle \mathrm{t_gain} \rangle$	Compute tgain only
15	Don't adjust	${ m Zero}$	${ m T}$	Copy^f	Error
16	$Adjust PHA_RO^c$	Input PHA_RO	${ m T}$	$\langle t_gain \rangle$	Compute tgain only
17	Don't adjust	PHA	\mathbf{F}	NONE	Compute PHA only
18	Don't adjust	Input PHA_RO	\mathbf{F}	Copy^f	Compute PHA only
19	Don't adjust	PHA	\mathbf{F}	NONE	Calculation disabled
20	Don't adjust	Input PHA_RO	\mathbf{F}	Copy^f	Calculation disabled
21	Don't adjust	PHA	\mathbf{F}	NONE	Compute PHA only
22	Don't adjust	Input PHA_RO	${ m T}$	Copy^f	Compute PHA only
23	Don't adjust	${ m Zero}$	${ m T}$	Copy^f	Calculation disabled
24	Don't adjust	Input PHA_RO	${ m T}$	Copy^f	Calculation disabled
25	Don't adjust	PHA	\mathbf{F}	NONE	Calculation disabled
26	Don't adjust	Input PHA_RO	\mathbf{F}	Copy^f	Calculation disabled
27	Don't adjust	PHA	\mathbf{F}	NONE	Calculation disabled
28	Don't adjust	Input PHA_RO	\mathbf{F}	Copy^f	Calculation disabled
29	Don't adjust	PHA	\mathbf{F}	NONE	Calculation disabled
30	Don't adjust	Input PHA_RO	${ m T}$	Copy^f	Calculation disabled
31	Don't adjust	Zero	${f T}$	Copy^f	Calculation disabled
32	Don't adjust	Input PHA_RO	${f T}$	Copy^f	Calculation disabled
Com	pute PHA from PH.	AS.			
		ied. CTI adjustment	may be applied	1.	
^r Inpu	t value of PHA_RO.	-			
	e a warning message).			
¹ Inpu	t value of PHA.				
The	keyword is copied or	nly if it exists.			