

MIT Kavli Institute

Chandra X-Ray Center

MEMORANDUM

March 16, 2017

To: Jonathan McDowell, SDS Group Leader

From: Glenn E. Allen, SDS

Subject: Temperature-dependent RMF spec

Revision: 1.01

URL: http://space.mit.edu/CXC/docs/docs.html#trmf

File: /nfs/inconceivable/d0/sds/specs/mkacisrmf/trmf_spec_1.01.tex

1 Description

This spec is a high-level description of how a script could be used to create a temperature-dependent RMF.

2 Parameters

The parameters for the script are identical to the parameters for the tool mkacisrmf, except the script includes the two additional parameters:

- 1. gtifile,f,a,"",,,"Input file with GTIs for each CCD (e.g. the evt2 file)"
- 2. mtlfile,f,a,"",,,"Input mission timeline file"

3 Processing

GTIs:

The start and stop times for each one of the N_{gti} good-time intervals for the CCD_ID of interest are read from the appropriate GTI HDU of the gtifile. Hereafter these times for the i^{th} interval are referred to as START[i] and STOP[i], respectively.

2. Temperatures:

The N_{mtl} sets of values for the time and focal-plane temperature are read from the MTL HDU of the mtlfile. Hereafter, the j^{th} time and temperature are referred to as $\mathrm{TIME}_{\mathrm{mtl}}[j]$ and $\mathrm{FP_TEMP}_{\mathrm{mtl}}[j]$, respectively. The header of the same HDU is read to obtain the values of the keywords $\mathrm{TIMEDEL}$ and $\mathrm{TIMEPIXR}$, which are hereafter referred to as $\mathrm{TIMEDEL}_{\mathrm{mtl}}$ and $\mathrm{TIMEPIXR}_{\mathrm{mtl}}$, respectively.

3. CALDB files:

(a) Names:

The CALDB is queried to obtain the N_{resp} response files associated with the DATE-OBS and DATE-END of the observation. There is one file for each temperature range calibrated. Hereafter, the k^{th} response file is referred to as respfile[k].

(b) Temperature intervals:

The minimum and maximum focal-plane temperatures for each respfile are obtained from the header keyword CBD10001 in the respfile. Hereafter these temperatures for the $k^{\rm th}$ file are referred to as, FP_TEMP_{min}[k] and FP_TEMP_{max}[k], respectively.

(c) Exposures:

The total exposure time associated with each respfile (i.e. with each temperature interval from $\text{FP_TEMP}_{\min}[k]$ to $\text{FP_TEMP}_{\max}[k]$) is initialized to zero. For each $k=0,\,1,\,\ldots,\,N_{\text{resp}}-1$:

$$\tau[k] = 0. (1)$$

4. Exposures:

For each good-time interval $i = 0, 1, ..., N_{\text{gti}} - 1$:

(a) For each focal-plane temperature $j=0,1,\ldots,N_{\rm mtl}-1$:

i.

$$t_0 = \text{TIME}_{\text{mtl}}[j] - \text{TIMEPIXR}_{\text{mtl}} \times \text{TIMEDEL}_{\text{mtl}}.$$
 (2)

ii. If

$$t_0 < \text{START}[i],$$
 (3)

then

$$t_0 = \mathsf{START}[i]. \tag{4}$$

iii. If

$$t_0 \geq \text{STOP}[i],$$
 (5)

then

$$t_0 = STOP[i]. (6)$$

iv. If

$$j = 0, (7)$$

then

$$t_0 = \text{START}[i]. \tag{8}$$

 $\mathbf{v}.$

$$t_1 = \text{TIME}_{\text{mtl}}[j] + (1 - \text{TIMEPIXR}_{\text{mtl}}) \times \text{TIMEDEL}_{\text{mtl}}.$$
 (9)

vi. If

$$t_1 < \text{START}[i],$$
 (10)

then

$$t_1 = \mathsf{START}[i]. \tag{11}$$

vii. If

$$t_1 \geq \text{STOP}[i],$$
 (12)

then

$$t_1 = STOP[i]. (13)$$

viii. If

$$j = N_{\text{mtl}} - 1, \tag{14}$$

then

$$t_1 = STOP[i]. (15)$$

ix.

$$\Delta t = t_1 - t_0. \tag{16}$$

x. For each respfile (i.e. each temperature interval) $k=0,1,...,N_{\text{resp}}-1$:

$$\text{FP_TEMP}_{\text{mtl}}[j] \geq \text{FP_TEMP}_{\text{min}}[k] \text{ and}$$
 (17)

$$FP_TEMP_{mtl}[j] < FP_TEMP_{max}[k], \tag{18}$$

then

$$\tau[k] = \tau[k] + \Delta t. \tag{19}$$

5. Composite ARF:

- (a) A weights map WMAP is obtained for the entire set of good-time intervals.
- (b) The ARF A is obtained using mkwarf with WMAP.
- 6. Temperature-dependent RMFs:

For each temperature interval (i.e. each respfile) $k = 0, 1, ..., N_{resp} - 1$:

- (a) If $\tau[k] > 0$, then
 - i. The good-time intervals $\mathrm{GTI}[k]$ are obtained for the temperature interval.
 - ii. The weights map WMAP[k] is obtained for the temperature interval.
 - iii. The ARF A[k] is obtained for the temperature interval using mkwarf with WMAP[k].
 - iv. The RMF R[k] is obtained for the temperature interval using mkacisrmf with respfile[k] and WMAP[k].
- 7. Temperature-weighted RMF:

The temperature-weighted RMF is given by¹

$$R = \frac{\sum_{k=0}^{N_{\text{resp}-1}} \tau[k] A[k] R[k]}{A \sum_{k=0}^{N_{\text{resp}-1}} \tau[k]}.$$
 (20)

Since the temperature-weighted RMF R is weighted relative to the composite ARF A, the RMF R and ARF A are a matched set that should be used to analyze the data.

 $^{^{1}\}mathrm{The}$ source spectrum is assumed to be the same for each temperature interval.