31

32

Alive and Strongly Kicking: Stable X-ray Quasi-Periodic Eruptions from eRO-QPE2 over 3.5 Years

1	Dheeraj Pasham ^(b) , ¹ Shubham Kejriwal ^(b) , ² E. R. Coughlin ^(b) , ³ Vojtěch Witzany ^(b) , ⁴ Alvin J. K. Chua ^(b) , ^{2,5}
2	MICHAL ZAJAČEK \textcircled{D} , ⁶ T. WEVERS \textcircled{D} , ⁷ and Yukta Ajay ⁸
3	¹ MIT Kavli Institute for Astrophysics and Space Research
4	Cambridge, MA 02139, USA
5	² Department of Physics, National University of Singapore, Singapore 117551
6	³ Department of Physics, Syracuse University, Syracuse, NY 13210, USA
7	⁴ Institute of Theoretical Physics, Charles University,
8	V Holešovičkách 2, 180 00 Prague 8, Czechia
9	⁵ Department of Mathematics, National University of Singapore, Singapore 119076
10	⁶ Department of Theoretical Physics and Astrophysics, Faculty of Science, Masaryk University,
11	Kotlářská 2, 611 37 Brno, Czech Republic
12	⁷ Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA
13	⁸ Department of Physics and Astronomy, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA

Department of Physics and Astronomy, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA

ABSTRACT

Quasi-periodic eruptions (QPEs) are recurring bursts of soft X-rays from the nuclei of galaxies. 15 Their physical origin is currently a subject of debate, with models typically invoking an orbiter around 16 a massive black hole or disk instabilities. Here we present and analyze the temporal and spectral 17 evolution of the QPE source eRO-QPE2 over 3.5 years. We find that eRO-QPE2 1) is remarkably 18 19 stable over the entire 3.5-year temporal baseline in its eruption peak luminosity, eruption temperature, quiescent temperature, and quiescent luminosity, 2) has a stable mean eruption recurrence time of 20 2.35 hours, with marginal ($\sim 2\sigma$) evidence for a 0.1 hour reduction over the 3.5 yr period, and 3) 21 has a long-short variation in its recurrence time in August 2020, but this pattern is absent from all 22 subsequent observations. The stability of its peak eruption luminosity and that of the quiescent state 23 are notably dissimilar from three previously tracked QPEs (GSN069, eRO-QPE1, eRO-QPE3), which 24 show declines in eruption and quiescent flux over comparable temporal baselines. This stability is 25 even more pronounced in eRO-QPE2 due to its 2.4 hour average recurrence time compared to GSN-26 069's 9 hour, eRO-QPE1's 16 hour, and eRO-QPE3's 20 hour recurrence times, i.e., this system has 27 undergone 4-8 times more cycles than these other systems over the 3.5 years of observations. We 28 discuss the implications of these observations within the context of some proposed extreme mass ratio 29 inspiral (EMRI) models. 30

Keywords: tidal disruption events, black holes, accretion disks

1. INTRODUCTION

Quasi-periodic eruptions (QPEs) are recurring bursts 33 ³⁴ of soft X-rays (0.2-3.0 keV) that are spatially coin- $_{35}$ cident with the centers of nearby (redshift, $z \leq 0.1$) ³⁶ galaxies (Miniutti et al. 2019; Giustini et al. 2020). 37 There are presently eight systems in published litera-³⁸ ture with confirmed QPEs: GSN 069 (Miniutti et al. ³⁹ 2019), RX J1301.9+2747 (Giustini et al. 2020), eRO-40 QPE1, eRO-QPE2 (Arcodia et al. 2021), eRO-QPE3, 41 eRO-QPE4 (Arcodia et al. 2024), AT2019qiz (Nicholl 42 et al. 2024), and SwJ023017.0+283603 (Evans et al. ⁴³ 2023; Guolo et al. 2024b). These have recurrence times 44 (i.e., the amount of time between successive eruptions) ⁴⁵ ranging from 2.4 hours to 22 days, with a dispersion in ⁴⁶ arrival time of eruptions of up to $\sim 30\%$ (Miniutti et al. ⁴⁷ 2023b; Pasham et al. 2024a; Chakraborty et al. 2024). ⁴⁸ In general, their X-ray spectra during quiescence, i.e., ⁴⁹ between the eruptions, can be fit with a disk blackbody ⁵⁰ with a temperature of a few tens of eV (e.g., Miniutti ⁵¹ et al. 2019; Arcodia et al. 2021). During the eruptions an ⁵² additional single-temperature blackbody (0.1-0.25 keV) ⁵³ is necessary to explain the data, and thus the pres-⁵⁴ ence of a warmer thermal component is generally cor-⁵⁵ related with the X-ray flux (e.g., Miniutti et al. 2019).

⁵⁶ It has been suggested that the quiescent emission tracks ⁵⁷ an underlying disk, perhaps formed from a relatively ⁵⁸ recent tidal disruption event (TDE) (e.g., Rees 1988; ⁵⁹ Gezari 2021). In addition, the host galaxies of QPEs ⁶⁰ and TDEs have a number of shared preferences, in-⁶¹ cluding an overrepresentation of post-starburst galaxies ⁶² (French et al. 2016; Graur et al. 2018; Wevers et al. 2022) ⁶³ and an overrepresentation of gas-rich environments with ⁶⁴ recently faded active galactic nuclei (Wevers & French ⁶⁵ 2024; Wevers et al. 2024). A clear direct connection be-⁶⁶ tween an optically selected TDE and an X-ray QPE has ⁶⁷ only recently been established (Nicholl et al. 2024).

Alongside other repeating phenomena such as quasi-68 ⁶⁹ periodic outflows (QPOuts; Pasham et al. 2024b) and ⁷⁰ stable soft X-ray quasi-periodic oscillations (QPOs; Ke-71 jriwal et al. 2024; Gierliński et al. 2008; Pasham et al. ⁷² 2019), these repeating extragalactic nuclear transients 73 (RENTs) could represent electromagnetic counterparts 74 of extreme mass ratio inspirals (EMRIs), which con-75 tain a massive black hole and an orbiting companion ⁷⁶ (a star or another compact object) that is substantially 77 less massive (Krolik & Linial 2022; Linial & Sari 2023; 78 King 2020; Metzger et al. 2021; Linial & Metzger 2023; 79 Suková et al. 2021; Franchini et al. 2023; Zhao et al. ⁸⁰ 2022; Xian et al. 2021; Wang 2024; King 2023). The ⁸¹ alternative hypothesis is that these regular modulations ⁸² could be triggered by instabilities operating in the inner ⁸³ regions of the accretion flow (Śniegowska et al. 2023; 84 Kaur et al. 2023; Czerny et al. 2023; Pan et al. 2022; ⁸⁵ Raj & Nixon 2021). The latter set of models has been ⁸⁶ disfavored – at least in some cases – because the periods ⁸⁷ appear to be uncorrelated with the black hole's mass ⁸⁸ (see bottom right panel of Fig. 5 of Guolo et al. 2024b), ⁸⁹ and the shape of the eruption profiles are inverted with ⁹⁰ respect to what is predicted from the radiation pressure ⁹¹ instability (e.g., compare Figs. 1 and 2 of Arcodia et al. ⁹² 2021 with Fig. 7-10 of Sniegowska et al. 2023 and Fig. ⁹³ 3 of Raj & Nixon 2021). We stress, however, that at 94 present we cannot rule out instability models.

Using EMRI population models, some works have argued that the most favorable orbital frequency (at the present epoch) for enabling future detection with LISA is 0.5 ± 0.2 mHz, or an orbital period on the order of $90 \sim 1$ hour (Kejriwal et al. 2024). With a mean period of 2.4 hours (Arcodia et al. 2021), eRO-QPE2 (red-101 shift z = 0.0175; Arcodia et al. 2021) is thus an es-102 pecially exciting target, as it may represent a promising 103 candidate for multi-messenger study in the coming age 104 of space-based gravitational-wave observatories (Zhao 105 et al. 2022).

In this work, we studied the long-term evolution of $_{107}$ eRO-QPE2 using XMM-Newton data taken between

¹⁰⁸ August 2020 to February 2024, i.e., a temporal base-¹⁰⁹ line of 1277 days or 3.5 years. Our main finding is ¹¹⁰ that, unlike the three previously tracked QPE systems 111 GSN 069 (Miniutti et al. 2023b), eRO-QPE1 (Pasham ¹¹² et al. 2024a; Chakraborty et al. 2024), and eRO-QPE3 ¹¹³ (Arcodia et al. 2024), eRO-QPE2 has remained stable ¹¹⁴ in its eruption strength, average time between eruptions, ¹¹⁵ and guiescent luminosity (section 3). The median (stan-¹¹⁶ dard deviation) time between the 9 eruptions seen in ¹¹⁷ Aug 2020 was 2.42 (0.09) hours. The values combining ¹¹⁸ the data taken in December 2023 and February 2024 ¹¹⁹ is 2.33 (0.06) hours. Although not statistically signifi-120 cant, the small change of 0.09 hours over ≈ 3 years could ¹²¹ represent the orbital decay of the putative EMRI. This 122 would however be too fast for a vacuum EMRI (section 123 6.4).

2. DATA REDUCTION AND ANALYSIS

Within the context of this work, we use a standard Λ CDM cosmology with parameters H₀ = 67.4 km s⁻¹ Λ CDM cosmology with parameters H₀ = 67.4 km s⁻¹ Λ CDM cosmology and $\Omega_{\Lambda} = 1 - \Omega_{\rm m} = 0.685$ (Planck Collaboration et al. 2020). Using the Cosmology calculator of Wright (2006), eRO-QPE2's luminosity distance 130 is estimated to be 78.9 Mpcs.

131 2.1. XMM-Newton Data Reduction and Analysis

XMM-Newton's European Photon Imaging Camera 132 133 (EPIC; pn: Strüder et al. 2001, MOS: Turner et al. 134 2001) observed eRO-QPE2 on six occasions between 135 6 August 2020 and 4 February 2024. One of the ob-136 servation is not public and we did not include it in ¹³⁷ our work. The two most recent observations (obsIDs: $_{138}$ 0932590101/XMM#5, 0932590201/XMM#4) were part ¹³⁹ of an approved guest observer program (PI: Wevers T.) ¹⁴⁰ and we include them in this work along with the 3 pub-¹⁴¹ licly available datasets (obsIDs: 0872390101/XMM#1, 142 0893810501/XMM#2, 0883770201/XMM#3). We used ¹⁴³ data from XMM-Newton's European Photon Counting ¹⁴⁴ Camera (EPIC) pn and MOS in this work. Combined ¹⁴⁵ EPIC (pn+MOS) data was used for light curve analysis 146 to improve the statistics in individual eruptions. How-147 ever, for energy spectral analysis we exclude MOS data ¹⁴⁸ because of their deteriorated response below $\sim 1 \text{ keV}$. 149 e.g., see https://xmmweb.esac.esa.int/docs/documents/ 150 CAL-TN-0018.pdf. We used XMM-Newton's software ¹⁵¹ XMMSAS version 19.1.0 with the latest calibration data 152 for analysis.

¹⁵³ First we downloaded the five data from XMM-¹⁵⁴ Newton's science archive accessible at https://www. ¹⁵⁵ cosmos.esa.int/web/xmm-newton/xsa. We reduced ¹⁵⁶ the raw Observation Data Files (ODFs) using ¹⁵⁷ the standard procedures outlined in these data

https://www.cosmos.esa.int/web/ 158 analysis threads: ¹⁵⁹ xmm-newton/sas-threads. Then we extracted source ¹⁶⁰ events separately from pn and MOS detectors. For this ¹⁶¹ we used a circular aperture centered on coordinates (RA, $_{162}$ Dec) = (02:34:48.97, -44:19:31.65) with a radius of 25". ¹⁶³ For pn (MOS) we screened out events with PATTERN $_{164}$ greater than 4 (12). We used 0.25-2.5 keV bandpass ¹⁶⁵ where the source is detected above the background. A 166 nearby circular regions with a radii of 50'' and free of ¹⁶⁷ point sources was chosen to compute the background. ¹⁶⁸ For each obsID we inspected the background light curves ¹⁶⁹ manually and excluded epochs dominated by flares. We ¹⁷⁰ combined the instrumental good time intervals (GTIs) ¹⁷¹ with those excluding the background flares to obtain a ¹⁷² final clean GTI for each obsID. The resulting X-ray light ¹⁷³ curves are shown in Fig. 1.

From each obsID we extracted two spectra using only 174 175 pn data: one covering the epochs of the eruptions 176 and another using events during the quiescence. The 177 spectra were binned using XMMSAS software's spec-178 group task with mincounts=1 and oversample=3. C-¹⁷⁹ stat was used for fitting. For all spectra, the MilkyWay ¹⁸⁰ Hydrogen column of *tbabs* was derived from HI maps using the HEASARC online tool https://heasarc.gsfc. 181 182 nasa.gov/cgi-bin/Tools/w3nh/w3nh.pl and was fixed to value of 1.6×10^{20} cm⁻². The best-fitting model pa-183 a ¹⁸⁴ rameters are show in Fig. 5. XSPEC (Arnaud 1996) 185 ready X-ray spectra along with the background spec-¹⁸⁶ tra and relevant response files can be found here: https: /zenodo.org/records/13140806. 187

188

3. RESULTS

Fig. 1 shows the five XMM-Newton/EPIC (pn+MOS) 190 0.25-2.5 keV X-ray light curves of eRO-QPE2. We ap-191 plied the Bayesian blocks algorithm (Scargle et al. 2013) 192 to estimate the peaks of the individual eruptions in a 193 model-independent manner (thick, black horizontal lines 194 in Fig. 1). These values are shown in the bottom row 195 of Fig. 2. We then fit the eruptions with a skewed-196 Gaussian model that allows us to estimate the peaks to 197 a much higher precision-typical 1σ uncertainty of <100 198 secs (top row of Fig. 2).

In order to reliably estimate the median time between eruptions we need to sample several of them. The best attack we have is XMM#1 with 9 eruptions, followed by XMM#5, XMM#3 and XMM#4 with 6, 5 and 4 full eruptions, respectively. The mean time (standard deviation) between subsequent eruptions during XMM#1, XMM#3, XMM#4, and XMM#5 was 2.42 (0.09), 2.27 (0.01), 2.32 (0.07), and 2.35 (0.06), respectively. If we eruptions, then we can see that the mean time between ²⁰⁹ eruptions during mid-2022 and late 2023–early 2024 has ²¹⁰ perhaps decreased by about 0.1 hours compared to the ²¹¹ eruptions on 6 August 2020.

212 3.1. Quantifying any potential long-term trend

To test for a trend in the period with the time, we used the linmix package (Kelly 2007). linmix is a Bayesian framework for linear regression that finds best-fit lincertainties and a correlation index (Pearson), by taking into account errors in both x- and y-values. The documentation and more details on linmix implementation can be found at this github repository https: 21/github.com/jmeyers314/linmix?tab=readme-ov-file.

We carried out the regression analysis using the *Lin*-222 223 Mix function by fitting the data points using 2 Gaus- $_{224}$ sians (K = 2) and instantiating 50 Monte Carlo Markov 225 Chains (*nchains* = 50) for 10000 iterations. The first $_{226}$ 30% of the fit values were discarded since this fraction 227 corresponds to the "burn-in" phase of the MCMC sam-228 pling. We calculate the best-fit regression parameters 229 by finding the median of the parameter distributions 230 for slope and intercept, as a median estimate is less-²³¹ sensitive to outliers in the data. Results of the regres-²³² sion analysis are shown in Fig. 3 and 4 and the best-fit ₂₃₃ parameters are slope= $(-8.2\pm3.6)\times10^{-5}$ hours/day and $_{234}$ intercept= (7.3 ± 2.1) hours. The Pearson correlation in- $_{235}$ dex takes values from -1 to 1, where an index >0 suggests ²³⁶ a positive correlation, values close to 0 suggest no (or $_{237}$ weak) linear correlation, and values <0 point towards a ²³⁸ negative (or inverse) correlation.

The above analysis suggests that the evidence for a de-240 creasing trend is only marginal at about 2σ (see Fig. 4).

3.2. Long-Term Spectral Evolution

Next, we studied the evolution of the average erup-Next, we studied the evolution of the average erupation and quiescence spectrum over the 3.5 year petried. Similar to previous studies of QPEs (e.g., Minitet al. 2019; Arcodia et al. 2021), we fit the eruption spectra with a single temperature blackbody *XSPEC* (Arnaud 1996): *tbabs*ztbabs*zashift(bbody)*, and the quiescent spectra with a single disk blackbody: *tbabs*ztbabs*zashift(diskbb)*. The evolution of the resulting best-fit model parameters is shown in Fig. 5. We then studied the stability of the individual eruption peaks and widths which are shown in Fig. 6 and 7. Based on this we conclude that the eROstable OPE2's eruptions have been stable over the past 255 3.5 years.

COMPARISON TO LONG-TERM EVOLUTION OF OTHER QPES

Figure 1. 0.25-2.5 keV XMM-Newton/EPIC (pn+MOS) X-ray light curves of eRO-QPE2. The time bin size in each case is 100 s and the observation dates are indicated at the top of each panel. The thick black horizontal lines are the optimal time bins derived from the Bayesian blocks algorithm of Scargle et al. (2013). The solid curves are the best-fit skewed-Gaussian model fits.

Figure 2. Evolution of time between eruptions with time for all XMM-Newton datasets. The horizontal dashed blue lines represent the mean value in each case. The y-scale is the same in all panels (2.1 to 2.7 hours). Panels in the same column share their x-axes. Bayesian blocks is a model independent way of estimating the peak times while in the top row we show peak times estimated by modeling the eruptions with skewed Gaussians. The errorbars in the case of Bayesian blocks represent the size of the block while it represents the statistical uncertainty for skewed Gaussian modeling.

Four QPE sources, GSN 069, eRO-QPE1, eRO-QPE3 258 and eRO-QPE4 have been tracked over multiple years 259 (Miniutti et al. 2023b; Pasham et al. 2024a; Chakraborty 260 al. 2024; Arcodia et al. 2024). In the first three et261 cases, the average strength of eruptions/peak eruption 262 flux gradually decreased over a few years timescale (see 263 Figs. 1 and 2 of Miniutti et al. 2023b, Fig. 2 of Pasham 264 et al. 2024a and Fig. 11 of Arcodia et al. 2024). In 265 the case of GSN 069 QPEs shut off over roughly 500 266 267 d ays but turned back on after about two years (see Fig. of Miniutti et al. 2023a). eRO-QPE4's data lacks the 4 268 ²⁶⁹ signal-to-noise ratio necessary to determine if similar be-²⁷⁰ havior is occurring. Further tracking is necessary to see eRO-QPE3 and eRO-QPE1's eruptions shutoff and 271 if urn back on in a manner similar to GSN 069. 272 t

In GSN 069, eRO-QPE1 and eRO-QPE3 there is an 273 ²⁷⁴ apparent declining trend in observed quiescence X-ray luminosity (see Fig. 4 of Miniutti et al. 2023a and Fig. 275 11 of Arcodia et al. 2024, and Chakraborty et al. 2024). 276 ²⁷⁷ In the case of GSN 069 and eRO-QPE3 this represents a factor of ≈ 3 change over 500 days and ≈ 5 decrease over 278 279 800 days, respectively. Based on our analysis of eRO-QPE1's most recent XMM-Newton dataset taken in Jan-280 uary 2024 (PI: Arcodia) and its early XMM-Newton ob-281 ²⁸² servations, we estimate a decrease of roughly a factor of 283 2.5 between July–August 2020 and January 2024 (ob-284 served 0.3-1.2 keV quiescent fluxes of $(4.7\pm0.7)\times10^{-15}$ $_{285} \text{ erg s}^{-1} \text{ cm}^{-2} \text{ and } (2.1 \pm 0.3) \times 10^{-15} \text{ erg s}^{-1} \text{ cm}^{-2}).$ In ²⁸⁶ summary, GSN 069, eRO-QPE1 and eRO-QPE3 appear 287 to behave the same way over a 3+ years in terms de-²⁸⁸ creasing eruption strength and quiescence luminosity.

eRO-QPE2's long-term behavior is distinct from all the above QPE systems: eRO-QPE2 has been remarkably stable in terms of average eruption luminosity, eruption temperature, quiescence luminosity and temperature (see Fig. 2).

²⁹⁴ 5. BASIC ENERGETICS CALCULATION

With a redshift of z = 0.0175 (Arcodia et al. 2021), 295 $_{296}$ the luminosity per eruption in the 0.2 - 2.5 keV band is $_{297} \simeq 10^{42.2} \text{ erg s}^{-1}$, which translates to a total integrated ²⁹⁸ luminosity of $\sim 10^{43.3}$ erg s⁻¹. If the liberated energy ul-²⁹⁹ timately derives from accretion onto the black hole, then ³⁰⁰ adopting a radiative efficiency of 0.1 and an eruption du- $_{301}$ ration of ~ 2 ks implies an accreted mass per eruption $_{302}$ of $\sim 2.2 \times 10^{-7} M_{\odot}$. If the object feeding the accretion $_{\rm 303}$ has a mass comparable to a solar mass, then the total ³⁰⁴ number of eruptions required to completely deplete the $_{305}$ mass of the object is ~ 4.5×10^6 , suggesting that the ₃₀₆ lifetime of the system is $\sim 4.5 \times 10^6 \times 2.4$ hr $\simeq 1200$ yr. $_{307}$ If we instead use only the energy in the 0.2 - 2.5 keV ³⁰⁸ band, the lifetime would be increased by a factor of 10, ³⁰⁹ but regardless the system would be cosmologically short 310 lived. In case the eruptions are associated with a ther- $_{311}$ mally emitting area, a typically lengthscale is $R_{\rm erupt} \sim$ $_{312} (L_{\rm erupt}/10^{43.3} \,{\rm erg \, s^{-1}})^{1/2} (kT_{\rm erupt}/200 \,{\rm eV})^{-2} \sim 28 \, R_{\odot} \text{ or}$ 313 133 gravitational radii for $M_{\bullet} = 10^5 M_{\odot}$. Hence, the ³¹⁴ emission could be associated with an ejected, expanding 315 cloud (Franchini et al. 2023) or a compact area of an ac-316 cretion disk emitting due to circularization shocks with ³¹⁷ an inspiralling gas (Lu & Quataert 2023).

Figure 3. Best-fit regression fit to the time between eruptions vs time using the linmix linear regression framework. The shaded grey regions give 1σ , 2σ and 3σ confidence intervals (C.I.) of the computed best-fit line. Both x and y errors have been included. The x-errors are not visible since the error bars are smaller than the marker size. The evidence for a linear decay of about 0.1 hr over 3+ years is marginal (see Fig. 4).

351

35

A recent set of hydrodynamical simulations by Yao 318 ³¹⁹ et al. (2024) showed that a main-sequence star should be stripped of $\sim 10^{-6} - 10^{-4} M_{\odot}$ per passage through the disk, significantly more than suggested by the energetics 321 ³²² above. Following Linial & Metzger (2023) the authors ³²³ modeled the QPE energy release only as a fraction of the ³²⁴ energy of the shock caused by the supersonic star-disk 325 collision, implying that the rest of the matter builds ³²⁶ up in the accretion disk. Using this assumption, the 327 authors estimated the lifetime of eRO-QPE2 to mere 328 decades due to the ablation of the star, which also led to ³²⁹ a suggestion of a future rise or outburst of the quiescent ³³⁰ accretion luminosity due to the matter build-up in the ³³¹ disk. This is in tension with our observation in Fig. 5, ³³² which shows that both the strength of the QPEs and the 333 quiescent emission of the disk is stable on the timescale 334 of years.

335

6. DISCUSSION

³³⁶ 6.1. On the disappearance of long-short pattern

One of the clear results from our study is the dis-337 One of the long-short pattern seen in the first 338 XMM-Newton observation (top-left of Fig. 2). Under 340 the EMRI paradigm the long-short pattern can be ex-341 plained with an eccentric orbiter interacting with the 342 disk twice per orbit. The setup is illustrated in Fig-343 ure 8. We assume that the orbit is mildly eccentric and 344 that the short intervals $T_{\rm s}$ correspond to the section of ³⁴⁵ the orbit containing the comparatively quick pericentre ³⁴⁶ passage and the long intervals T_1 to sections contain-³⁴⁷ ing apocenter passages. We use the small-eccentricity ³⁴⁸ expansion of the Kepler equation to express the times ³⁴⁹ as

$$T_{\rm s} = \frac{P_{\rm orb}}{2} \left(1 - \frac{4e}{\pi} \right) + \mathcal{O}(e^3) \,, \tag{1}$$

$$T_{\rm l} = \frac{P_{\rm orb}}{2} \left(1 + \frac{4e}{\pi} \right) + \mathcal{O}(e^3) \,. \tag{2}$$

³⁵² From this we obtain $e \approx \pi (T_{\rm l} - T_{\rm s})/(4P_{\rm orb})$ Using the ³⁵³ approximate $P_{\rm orb} \approx 4.8$ hours and $T_{\rm l} - T_{\rm s} \approx 0.15$ hours ³⁵⁴ we get $e \approx 0.025$. The disappearance of the long-short ³⁵⁵ pattern can then be accounted for by relativistic pericen-³⁵⁶ ter precession as illustrated in Figure 8, which leads to ³⁵⁷ equal times between passages and occurs with a period ³⁵⁸ (Robertson 1938)

$$T_{\rm prec} = \frac{2\pi P_{\rm orb}^{5/3} c^2}{3(2GM\pi)^{2/3}} + \mathcal{O}(e^2)$$

= 30 days $\left(\frac{M}{10^6 M_{\odot}}\right)^{-2/3} \left(\frac{P_{\rm orb}}{5 \text{ hours}}\right)^{-5/3}$. (3)

³⁶⁰ The switch between the equal-passage and long-short ³⁶¹ transition times occurs twice per a full precession cy-³⁶² cle, so we can essentially assume a random pattern to ³⁶³ appear in the XMM#1-#5 datasets that spread over ³⁶⁴ years. This qualitatively fits our observations. To con-

Figure 4. Results from the linmix regression analysis of time between eruptions vs time. (top left) Distribution of the correlation (Pearson index); (top right) Log-normal distribution of the slope and intercept values, the red cross marker gives the location of best-fit regression values in the parameter space (marker size not to be scaled with associated errors); Distribution of the fit values of (bottom left) slope and (bottom right) intercept.

³⁶⁵ firm this scenario, we would require a good mass esti-³⁶⁶ mate on the BH in eRO-QPE2 to constrain $T_{\rm prec}$ and ³⁶⁷ a series of ~ 25-hour observations repeated a few times ³⁶⁸ over the timespan $T_{\rm prec}/2$.

6.2. Stability of the quiescent emission

369

It has been hypothesized that the disc through which ³⁷⁰ It has been hypothesized that the disc through which ³⁷¹ the orbiter passes (thus generating the QPEs) can be ³⁷² produced from a TDE (Linial & Metzger 2023; Nicholl ³⁷³ et al. 2024), and – if the fallback of debris traces the ³⁷⁴ accretion rate onto the black hole – the declining am-³⁷⁵ plitude of the quiescent emission seen in other sources ³⁷⁶ (Arcodia et al. 2024; Miniutti et al. 2023a) is consis-³⁷⁷ tent with this hypothesis. If a past TDE also produced ³⁷⁸ the disc and is responsible for the quiescent emission in ³⁷⁹ eRO-QPE2, and the accretion rate is tracking the fall-³⁸⁰ back rate, the lack of evolution implies that the TDE ³⁸¹ occurred at a time much earlier than the time at which ³⁸² we are currently detecting the QPEs. To see this, if we ³⁸³ denote L_0 and L_1 as the luminosities at times t_0 and t_1 , ³⁸⁴ where t_0 is the time since disruption and $t_1 = t_0 + \Delta t$ ³⁸⁵ with $\Delta t = 3.5$ years (the time over which eRO-QPE2 ³⁸⁶ has been monitored), then it follows that

$$t_0 = n\Delta t \left(1 - L_1/L_0\right)^{-1}.$$
 (4)

³⁸⁸ Here we assumed that the luminosity tracks the fallback ³⁸⁹ rate, where the latter scales as t^{-n} , with n = 5/3 if ³⁹⁰ the object was completely destroyed (Phinney 1989) or ³⁹¹ n = 9/4 if it was partially destroyed (Coughlin & Nixon ³⁹² 2019) and t is time since disruption. Since $L_1/L_0 \simeq 1$ ³⁹³ for eRO-QPE2, it follows that the star must have been ³⁹⁴ destroyed well before 3.5 years ago.

Alternatively, it may be the case that the accreion rate onto the black hole is no longer tracking the

Figure 5. Long-term evolution of eRO-QPE2's spectra during eruptions and quiescence. From each XMM-Newton obsID two spectra were derived: one using data during eruptions and one during the quiescence. These spectra were fit with a disk blackbody and a pure blackbody. During the quiescence only disk blackbody was sufficient. All errorbars represent 90% uncertainties. This data is available at https://zenodo.org/records/11415786

³⁹⁷ fallback rate, but is instead evolving viscously (Can-³⁹⁸ nizzo et al. 1990). While X-ray TDEs detected by ³⁹⁹ transient surveys show declining luminosities and X-ray ⁴⁰⁰ temperatures with time (Guolo et al. 2024a), it seems ⁴⁰¹ likely that at sufficiently late times, the X-ray emission ⁴⁰² would evolve on the (in principle much longer) viscous ⁴⁰³ timescale, rather than the fallback time of the debris ⁴⁰⁴ (Auchettl et al. 2017). The "plateau" phase in the late-⁴⁰⁵ time optical/UV emission observed from some TDEs has ⁴⁰⁶ been interpreted to arise from such a delay (Mummery ⁴⁰⁷ et al. 2024), and the fact that we are seeing no evolu-⁴⁰⁸ tion in the quiescent X-ray flux from this system could ⁴⁰⁹ imply that the same trend occurs at later times in the ⁴¹⁰ X-rays, consistent with theoretical models (Lodato & ⁴¹¹ Rossi 2011).

412 6.3. Implications for the model consisting of repeating 413 partial tidal disruption of a white dwarf in a 414 highly eccentric orbit

King (2020) suggested that QPEs represent the re-415 416 peated partial and tidal stripping of a white dwarf by 417 a supermassive black hole (but of lower mass; see also ⁴¹⁸ Zalamea et al. 2010). In this model, the pericenter dis-⁴¹⁹ tance is highly relativistic: since a small amount of mass 420 is removed from the star to power the accretion (mak-⁴²¹ ing the standard assumption of the radiative efficiency 422 of accretion; see Section 5), the pericenter distance of $_{423}$ the star is $r_{\rm p} \simeq 2r_{\rm t} \simeq 2R_{\star} \left(M_{\bullet}/M_{\star}\right)^{1/3}$, and with¹ $_{424} R_{\star} = 0.011 R_{\odot} \left(M_{\star} / (0.6 M_{\odot}) \right)^{-1/3}$ (Nauenberg 1972), $_{425}~M_{\star}~=~0.18 M_{\odot}~({
m King}~2022),~{
m and}~M_{\bullet}~=~2.3 \times 10^5 M_{\odot}$ $_{426}$ (King 2022), $2r_{\rm t} \simeq 7.3 GM_{\bullet}/c^2$. Even though the mass 427 ratio is extreme, the timescale over which the period ⁴²⁸ shrinks due to gravitational-wave emission is cosmolog- $_{429}$ ically short, which can be seen from the $e \simeq 1$ and $_{430} M_{\bullet} \gg M_{\star}$ limit of Equation 5.6 of Peters (1964) when 431 written in terms of the period of the orbiter and the ⁴³² pericenter distance of the orbit, which is

$$\dot{T} \simeq -\frac{85\pi}{4\sqrt{2}} \frac{M_{\star}}{M_{\bullet}} \frac{1}{x^{5/2}} \left(\frac{T}{T_{\rm p}}\right)^{2/3},$$
 (5)

⁴³⁴ where we set $r_{\rm p} = xGM_{\bullet}/c^2$ and $T_{\rm p} = 2\pi r_{\rm p}^{3/2}/\sqrt{GM_{\bullet}}$. ⁴³⁵ With the pericenter distance fixed – which is a good ⁴³⁶ approximation until the final stages of the inspiral; note ⁴³⁷ that, from equations 5.5 and 5.6 of Peters (1964), $\dot{r}_{\rm p}/\dot{a} \propto$ ⁴³⁸ $(1-e)^2$ when $e \simeq 1$ and the mass ratio is small – the ⁴³⁹ gravitational-wave inspiral time that follows from the ⁴⁴⁰ preceding equation is

$$t_{\rm gw} \simeq 200 \text{ yr}$$

$$\times \left(\frac{x}{10}\right)^{7/2} \left(\frac{M_{\bullet}}{10^5 M_{\odot}}\right)^{2/3} \left(\frac{M_{\bullet}/M_{\star}}{10^6}\right) \left(\frac{T_0}{1 \text{ hr}}\right)^{1/3}.$$
(6)

¹ This assumes that the star is of low mass and the electrons are non-relativistic; the pericenter distance only becomes more relativistic as the white dwarf mass grows and its radius shrinks more rapidly.

Figure 6. Same as Fig 2 but here we show the evolution of eruption peaks with time for all XMM-Newton datasets.

Figure 7. Same as Fig 2 but here we show the evolution of the eruption duration (width of the skewed Gaussians) with time for all *XMM-Newton* datasets

⁴⁴² With x = 7.3, $M_{\bullet} = 2.3 \times 10^5 M_{\odot}$, and $M_{\star} = 0.18 M_{\odot}$, ⁴⁴³ this gives $t_{\rm gw} \simeq 200$ yr.

Figure 9 shows the evolution of the orbital period of 444 the white dwarf using the Peters (1964) equations for the 446 decay in semimajor axis and eccentricity, where we set the initial period to 2.4 hours and the pericenter distance 447 $_{448}$ to $2r_{\rm t}$, which establish the initial semimajor axis and ec-⁴⁴⁹ centricity. In the left (right) panel we adopted a stellar 450 mass of $M_{\star} = 0.2 M_{\odot}$ $(M_{\star} = 0.4 M_{\odot})$, and the black 451 hole mass is indicated in the legend; note that Equa- $_{452}$ tion (5) predicts $\Delta T \simeq -0.085$ hr over 3 years for these 453 parameters, $M_{\star} = 0.2 M_{\odot}$, and $M_{\bullet} = 10^5 M_{\odot}$, which ⁴⁵⁴ agrees effectively exactly with the value of the dashed 455 curve in the left panel at t = 3 yr. The observations of ⁴⁵⁶ eRO-QPE2 presented here suggest that the recurrence 457 time of the flares may have declined from ~ 2.4 hours $_{458}$ to ~ 2.3 hours from 2020 to 2022 (though there is no ⁴⁵⁹ corresponding decline between 2022 and 2024), and if ⁴⁶⁰ we attribute this change in period to gravitational-wave $_{461}$ decay, then the parameters suggested in King (2022) – $_{462}$ namely a black hole mass of $2.3 \times 10^5 M_{\odot}$ and a white

⁴⁶³ dwarf mass of $0.18 M_{\odot}$ – are broadly consistent with ob-⁴⁶⁴ servations. On the other hand, a more massive star is ⁴⁶⁵ strongly ruled out, unless the black hole is in the IMBH ⁴⁶⁶ regime.

Since the (Galactic) white dwarf mass distribution is 467 468 strongly peaked at ~ $0.6M_{\odot}$ (O'Brien et al. 2024) (and 469 the production of a $\sim 0.2 M_{\odot}$ white dwarf would re-470 quire mass exchange with a binary companion), this sug-⁴⁷¹ gests that the original white dwarf had a mass closer to $_{472} \sim 0.6 M_{\odot}$ and was the core of a red giant, the enve-473 lope of which was stripped during the initial tidal in-474 teraction with the black hole – as put forward by King $_{475}$ (2020). For the same black hole mass, however, $2r_{\rm t}$ for $_{476}$ a $0.6M_{\odot}$ white dwarf is ~ $3.2GM_{\bullet}/c^2$, implying that 477 the black hole must be spinning and the orbit of the ⁴⁷⁸ white dwarf must be prograde to avoid direct capture. 479 Since the minimum pericenter distance an object can 480 attain around a spinning black hole without being di-⁴⁸¹ rectly captured is (Will 2012; Coughlin & Nixon 2022) $_{482} r_{\min} = \left(1 + \sqrt{1-a}\right)^2$, the black hole spin must satisfy $_{483} a \gtrsim 0.34$ to be able to partially tidally disrupt any white

Figure 8. The potential scenario for the disappearance of the long-short pattern. In 2020 we see the shorter times between eruptions because of the faster pericentre passage, and the longer time due to the apocenter passage (blue curve). Due to precession the orbit shifts to the green ellipse where the passage between intersections becomes the same and the long-short pattern disappears.

⁴⁸⁴ dwarf without direct capture, and the angular momen-485 tum of the orbit of that white dwarf would be exactly ⁴⁸⁶ aligned with the black hole spin. For a black hole spin of $_{487} a = 0.998$, the number of encounters in the pinhole and 488 full-loss cone regime – from which the star must have 489 originated because the tidal radius of the giant (i.e., the ⁴⁹⁰ star on average) is orders of magnitude larger than that $_{491}$ of the white dwarf – that come within $2r_{\rm t}$ and are not ⁴⁹² directly captured is, with the methodology described in ⁴⁹³ Coughlin & Nixon (2022), $\simeq 5.5\%$, making such an en-494 counter rare. It is also difficult to see how the mass ⁴⁹⁵ transfer could be stable, given that the tidal radius of ⁴⁹⁶ the white dwarf increases with decreasing stellar mass ⁴⁹⁷ (characteristic of polytropic stars), and neither tides nor ⁴⁹⁸ gravitational-wave emission modifies the pericenter dis-⁴⁹⁹ tance significantly for such extreme-mass ratio systems ⁵⁰⁰ (see the discussion in Cufari et al. 2023; Bandopadhyay 501 et al. 2024 relevant to TDEs of stars on bound orbits ⁵⁰² where the same arguments apply).

503 6.4. Implications for the low-eccentricity EMRI 504 Hypothesis

The long-term data for eRO-QPE2 can also be checked for consistency with the vacuum-EMRI hypothesis in low eccentricity configurations, as suggested by Zhou et al. (2024). Consider first the measured eruption

times in all observation runs except XMM2², denoted as $\hat{t}_i^n \pm \Delta \hat{t}_i^n$ for the i^{th} eruption within the n^{th} run with estimated 1σ errors $\Delta \hat{t}_i^n$ as described in Sec 3. The measured QPE period \hat{T}_i^n can be estimated as $\hat{T}_i^n = \hat{t}_{i+1}^n - \hat{t}_i^n$ with errors $\Delta \hat{T}_i^n = \sqrt{(\Delta \hat{t}_{i+1}^n)^2 + (\Delta \hat{t}_i^n)^2}$. As shown in Fig. 2, \hat{T}_i^n follows a long-short pattern, most clearly visible in the XMM1 run which, neglecting disk precession (see e.g. Franchini et al. 2023; Arcodia et al. 2024), can be generically related to the Companion object's (CO's) orbital period as (Zhou et al. 2024) $\hat{T}_{\text{orb,i}}^n =$ $\hat{T}_i^n + \hat{T}_{i+1}^n$ with errors $\Delta \hat{T}_{\text{orb},i}^n = \sqrt{(\Delta \hat{T}_i^n)^2 + (\Delta \hat{T}_{i+1}^n)^2}$. Over a single run, we can treat the true long-timescaleaveraged orbital period of the CO, $T_{\rm orb}^n \sim$ hours, as a constant since the dissipation timescales for the EMRI described by the priors below are much longer (\sim years). With Gaussian likelihoods and flat priors on the i^{th} observation $T_{\text{orb,i}}^n$, the posterior on T_{orb}^n following Bayes' theorem is given as

$$p(T_{\text{orb}}^n|\{\hat{T}_{\text{orb,i}}^n\}) \propto \prod_i \mathcal{N}(\hat{T}_{\text{orb,i}}^n|T_{\text{orb}}^n, (\Delta \hat{T}_{\text{orb,i}}^n)^2).$$

505 Samples $\tilde{T}_{\rm orb}^n$ drawn from the above posterior give corre-⁵⁰⁶ sponding posterior samples for the orbital frequency of 507 the EMRI, $\tilde{f}_{\rm orb}^n = 1/\tilde{T}_{\rm orb}^n$, which are plotted in the left ⁵⁰⁸ panel of Figure 10 for various observation runs. Here, ⁵⁰⁹ we note that a simple linear fit over the mean orbital ⁵¹⁰ periods in the different observation runs, $\langle T_{\rm orb,i}^n \rangle$ us-511 ing the linregress module in scipy.stats (Virtanen 512 et al. 2020) yields the slope $\dot{T}_{\rm orb} \approx -(1.4 \pm 1.1) \times 10^{-4}$ $f_{\rm 513}$ hours/day, such that $\dot{T}_{\rm orb}/2 \approx -(0.7 \pm 1.1) \times 10^{-4}$ ⁵¹⁴ hours/day which is consistent with our fit for the QPE ⁵¹⁵ period in Sec. 3.1. Furthermore, the time evolution of $_{516} f_{\rm orb}$ at $t_0 = 2020$ can be described to linear-order as 517 $f(t) \approx f(t_0) + (t - t_0) f_{\text{orb}}(t_0)$. In a Bayesian predictive ⁵¹⁸ analysis, we can then check for consistency between ob-⁵¹⁹ servations and the EMRI hypothesis by comparing the ₅₂₀ observed value of $f_{\rm orb}(t_0)$ with its prior-predictive dis-⁵²¹ tribution under the EMRI model³.

To obtain the prior-predictive distribution, we see valuate the inspiral trajectories in generic loweccentricity orbits around a Kerr black hole as deses scribed by the **5PNAAK** vacuum-EMRI model in the **526** FastEMRIWaveforms (FEW) package (Katz et al. 2021). see This model ignores perturbative effects from CO-disk in-

 $^{^2}$ XMM2 only captures two full eruption events making it unsuitable for the analysis described in the text (which requires data from at least three peaks).

³ While higher-order derivatives may be required to better approximate the evolution of $f_{orb}(t)$, they remain poorly constrained by current observations and are thus ignored in our analysis.

Figure 9. The evolution of the orbital period due to gravitational-wave emission of a white dwarf around a massive black hole. The black hole mass is shown in the legend and the stellar mass is $M_{\star} = 0.2M_{\odot}$ (left) and $M_{\star} = 0.4M_{\odot}$ (right). In each case we adopted a pericenter distance of $2r_{t}$ (with the appropriate stellar radius, stellar mass, and black hole mass) and an initial orbital period of 2.4 hours, which establishes the initial semimajor axis of the orbit and the initial orbital eccentricity for integrating the general (i.e., including eccentricity) Peters (1964) equations. For low-mass white dwarfs and low-mass black holes, the orbital period does not decay by more than ~ 0.1 hours, which is consistent with observations (see Figure 2).

568

569

570

571

572

573

⁵²⁸ teractions (see e.g. Speri et al. 2023; Duque et al. 2024) ⁵²⁹ which however are small compared to the observational 530 uncertainties on $f_{\rm orb}$ described above. We set the follow-⁵³¹ ing conservative (uninformative) priors on the vacuum ⁵³² EMRI parameters describing the inspiral trajectory: the ⁵³³ primary massive black hole (MBH) and CO masses follow log-uniform distributions, $M \sim \log \mathcal{U}[10^4, 10^7]$, $_{535}$ $M_* \sim \dot{M} \times \log \mathcal{U}[10^{-5}, 10^{-4}]$, the dimensionless MBH sign spin, $a \sim \mathcal{U}[0.01, 0.99]$, the orbit's initial eccentricity, $_{537} e(t_0) \sim \mathcal{U}[0.01, 0.1]$, and the source's initial inclina-⁵³⁸ tion with respect to the spin direction of the MBH, 539 $\iota(t_0) \sim \mathcal{U}[0,\pi],^4$ all follow uniform distributions. The 540 trajectories are initialized at the observed frequency samples during the first run, i.e. $f_{\rm orb}(t_0) = \tilde{f}_{\rm orb}^{\rm n=XMM1}$ ⁵⁴² and are evolved for the entire XMM temporal baseline. The results of the prior-predictive analysis are pre-543 ⁵⁴⁴ sented in the right panel of Fig. 10. We find that, ⁵⁴⁵ while the prior-predictive distribution is consistent with the posterior distribution of $f_{dot}(t_0)$, the average rate 547 of evolution predicted by the vacuum EMRI model 548 is \approx an order-of-magnitude smaller than the observa-⁵⁴⁹ tions. In other words, a vacuum EMRI in eRO-QPE2 ⁵⁵⁰ would evolve significantly slower than the putative 0.1 ⁵⁵¹ hours over 3.5 years. Other models, such as drag-552 dominated EMRI inspirals (Linial & Metzger 2023; Ar-⁵⁵³ codia et al. 2024), or models of intermediate-mass-ratio ⁵⁵⁴ inspirals (Amaro-Seoane 2018), or combinations thereof, 555 can potentially explain the boosted rate of evolution,

⁴ $\iota(t_0) > \pi/2$ implies retrograde EMRI orbits.

⁵⁵⁶ and should thus be investigated upon confirming the ⁵⁵⁷ putative decline in eRO-QPE2.

Finally, a necessary condition for a vacuum-two-body GW inspiral is $\dot{f}_{\rm orb} > 0$, which is satisfied by $\approx 75\%$ of samples of the data from the posterior distributions (right panel of Fig. 10). Thus, the full range of vacuum-EMRI inspiral models are at most 75% consistent with the 3.5-year eRO-QPE2 data.

7. CONCLUSIONS

⁵⁶⁵ By performing timing and spectral analysis of eRO-⁵⁶⁶ QPE2's eruptions sampled five times over a period of ⁵⁶⁷ 3.5 years we conclude:

- The mean time between subsequent eruptions, i.e., the recurrence time, is constant between 2022 and 2024, with a hint of a decay of ≈ 0.1 hr between August 2020 and June 2022⁵.
- The energy spectra of both the eruptions and the quiescence have remained stable over this 3.5 year

⁵ During the preparation of this paper, the authors of the preprint Arcodia et al. (2024) also studied eRO-QPE2's long-term evolution, fitting individual eruptions with a Gaussian model (compared to our asymmetric Gaussian fits). These authors concluded that eRO-QPE2's recurrence times change from one observation to another which they attribute to either a gradual decline or evolution contaminated/dominated by modulations in arrivals of eruptions. This is distinct from our conclusion, and suggests that there maybe a fitting-function dependence to the trends that one infers from the data. If we consider the model-independent Bayesian blocks methodology, the evidence for a reduction in mean recurrence time is even less robust (see bottom panels of Fig. 2).

Figure 10. Left panel: 10^4 samples drawn from the posterior distribution of orbital frequencies f_{orb} inferred from the XMM data in run On where n: 1, 3, 4 and 5 corresponding to XMM#1,3,4 and 5. Right panel: The posterior distributions (black solid line) from the data and the prior-predictive distribution (green filled bars) from the vacuum-EMRI model of $\dot{f}(t_0)$ where $t_0 = 2020$ for the XMM1 run. The vacuum EMRI predicts a slower evolution than inferred from the data.

574	period both in terms of shape and luminosity. This
575	is consistent with Arcodia et al. (2024) 's conclu-
576	sions.

A low-mass (~ $0.2M_{\odot}$) white dwarf partially 577 tidally stripped by a $\sim 10^5 M_{\odot}$ would experience 578 a gravitational-wave-induced decay in its orbital 579 period that is consistent with the average ~ 0.1 580 hour reduction that is (tentatively) observed, but 581 the detailed evolution of the recurrence time, and 582 specifically the lack of period evolution over the 583 two years from 2022 to 2024 (see Figure 2), is not 584 consistent with the monotonic decline that is ex-585 pected from gravitational-wave emission. 586

• Finally, we find that observed stability is consis-587 tent with a vacuum EMRI scenario for a wide 588 range of parameters (EMRI mass ratio, eccentric-589 ity, spin, inclination). In fact, a vacuum EMRI 590 predicts almost an order of magnitude slower evo-591 lution that the putative 0.1 hrs over 3.5 years. 592 This elucidates the need for drag-dominated, the 593 so-called "dirty" EMRI frameworks, to accurately 594 model these systems. 595

ACKNOWLEDGMENTS

E.R.C. acknowledges support from NASA through the 597 Neil Gehrels Swift Guest Investigator Program, pro-598 posal number 1922148. E.R.C. acknowledges additional 599 support from the National Science Foundation through 600 grant AST-2006684, and from NASA through the Astro-601 ⁶⁰² physics Theory Program, grant 80NSSC24K0897. This research was supported in part by grant NSF PHY-603 604 2309135 to the Kavli Institute for Theoretical Physics 605 (KITP). M.Z. acknowledges support from the Czech Sci-606 ence Foundation through grant GACR Junior Star No. 607 GM24-10599M. Support for this work was provided by

⁶⁰⁸ NASA through grant GO-17447 from the Space Tele-⁶⁰⁹ scope Science Institute, which is operated by AURA, ⁶¹⁰ Inc., under NASA contract NAS5-26555. D.R.P would ⁶¹¹ like to thank Muryel Guolo for feedback on the paper.

DATA AVAILABILITY:

The data to reproduce Figures 1, 2 and 3 can be found 614 on zenodo: https://zenodo.org/records/11415786

596

 Amaro-Seoane, P. 2018, Phys. Rev. D, 98, 063018, doi: 10.1103/PhysRevD.98.063018 Arcodia, R., Merloni, A., Nandra, K., et al. 2021, Nature, 592, 704, doi: 10.1038/s41586-021-03394-6 Arcodia, R., Liu, Z., Merloni, A., et al. 2024, A&A, 684, A64, doi: 10.1051/0004-6361/202348881 Arcodia, R., et al. 2024. https://arxiv.org/abs/2406.17020 Arnaud, K. A. 1996, in Astronomical Society of the Pacific Conference Series, Vol. 101, Astronomical Data Analysis Software and Systems V, ed. G. H. Jacoby & J. Barnes, 17 Auchettl, K., Guillochon, J., & Ramirez-Ruiz, E. 2017, ApJ, 838, 149, doi: 10.3847/1538-4357/aa633b Bandopadhyay, A., Coughlin, E. R., Nixon, C. J., & Pasham, D. 2024, ApJ Under Review Cannizzo, J. K., Lee, H. M., & Goodman, J. 1990, ApJ, 351, 38, doi: 10.1086/168442 Chakraborty, J., Arcodia, R., Kara, E., et al. 2024, ApJ, 965, 12, doi: 10.3847/1538-4357/ad2941 Coughlin, E. R., & Nixon, C. J. 2019, ApJL, 883, L17, doi: 10.3847/2041-8213/ab412d —. 2022, ApJ, 936, 70, doi: 10.3847/1538-4357/ac85b3 Cufari, M., Nixon, C. J., & Coughlin, E. R. 2023, MNRAS, 520, L38, doi: 10.1093/mnrasl/slad001 Czerny, B., Cao, S., Jaiswal, V. K., et al. 2023, Ap&SS, 368, 8, doi: 10.1007/s10509-023-04165-7 Duque, F. Keiriwal S. Sherna, L. & Speri, L. 2024 	 Katz, M. L., Chua, A. J. K., Speri, L., Warburton, N., & Hughes, S. A. 2021, Phys. Rev. D, 104, 064047, doi: 10.1103/PhysRevD.104.064047 Kaur, K., Stone, N. C., & Gilbaum, S. 2023, MNRAS, 524, 1269, doi: 10.1093/mnras/stad1894 Kejriwal, S., Witzany, V., Zajacek, M., Pasham, D. R., & Chua, A. J. K. 2024, arXiv e-prints, arXiv:2404.00941, doi: 10.48550/arXiv.2404.00941 Kelly, B. C. 2007, ApJ, 665, 1489, doi: 10.1086/519947 King, A. 2020, MNRAS, 493, L120, doi: 10.1093/mnrasl/slaa020 — 2022, MNRAS, 515, 4344, doi: 10.1093/mnras/stac1641 — 2023, MNRAS, 523, L26, doi: 10.1093/mnrasl/slad052 Krolik, J. H., & Linial, I. 2022, ApJ, 941, 24, doi: 10.3847/1538-4357/ac9eb6 Linial, I., & Metzger, B. D. 2023, ApJ, 957, 34, doi: 10.3847/1538-4357/ac65b Linial, I., & Sari, R. 2023, ApJ, 945, 86, doi: 10.1111/j.1365-2966.2010.17448.x Lodato, G., & Rossi, E. M. 2011, MNRAS, 410, 359, doi: 10.1093/mnras/stad2203 Metzger, B. D., Stone, N. C., & Gilbaum, S. 2021, arXiv e-prints, arXiv:2107.13015. Mttps://arxiv.org/abs/2107.13015 Miniutti, G., Giustini, M., Arcodia, R., et al. 2023a, A&A, 674, L1, doi: 10.1051/0004-6361/202346653
 Evans, P. A., Nixon, C. J., Campana, S., et al. 2023, Nature Astronomy, 7, 1368, doi: 10.1038/s41550-023-02073-y Franchini, A., Bonetti, M., Lupi, A., et al. 2023, A&A, 675, A100, doi: 10.1051/0004-6361/202346565 French, K. D., Arcavi, I., & Zabludoff, A. 2016, ApJL, 818, L21, doi: 10.3847/2041-8205/818/1/L21 Gezari, S. 2021, ARA&A, 59, 21, doi: 10.1146/annurev-astro-111720-030029 Gierliński, M., Middleton, M., Ward, M., & Done, C. 2008, Nature, 455, 369, doi: 10.1038/nature07277 Giustini, M., Miniutti, G., & Saxton, R. D. 2020, A&A, 636, L2, doi: 10.1051/0004-6361/202037610 Graur, O., French, K. D., Zahid, H. J., et al. 2018, ApJ, 853, 39, doi: 10.3847/1538-4357/aaa3fd Guolo, M., Gezari, S., Yao, Y., et al. 2024a, ApJ, 966, 160, doi: 10.3847/1538-4357/ad2f9f Guolo, M., Pasham, D. R., Zajaček, M., et al. 2024b, Nature Astronomy, 8, 347, doi: 10.1038/s41550-023-02178-4 	 doi: 10.1051/0004-6361/202244512 Miniutti, G., Saxton, R. D., Giustini, M., et al. 2019, Nature, 573, 381, doi: 10.1038/s41586-019-1556-x Mummery, A., van Velzen, S., Nathan, E., et al. 2024, MNRAS, 527, 2452, doi: 10.1093/mnras/stad3001 Nauenberg, M. 1972, ApJ, 175, 417, doi: 10.1086/151568 Nicholl, M., Pasham, D. R., Mummery, A., et al. 2024, arXiv e-prints, arXiv:2409.02181, doi: 10.48550/arXiv.2409.02181 O'Brien, M. W., Tremblay, P. E., Klein, B. L., et al. 2024, MNRAS, 527, 8687, doi: 10.1093/mnras/stad3773 Pan, X., Li, SL., Cao, X., Miniutti, G., & Gu, M. 2022, ApJL, 928, L18, doi: 10.3847/2041-8213/ac5faf Pasham, D. R., Remillard, R. A., Fragile, P. C., et al. 2019, Science, 363, 531, doi: 10.1126/science.aar7480 Pasham, D. R., Tombesi, F., Suková, P., et al. 2024b, Science Advances, 10, eadj8898, doi: 10.1126/sciadv.adj8898

- 711 Peters, P. C. 1964, Physical Review, 136, 1224,
- 712 doi: 10.1103/PhysRev.136.B1224
- Phinney, E. S. 1989, in IAU Symposium, Vol. 136, TheCenter of the Galaxy, ed. M. Morris, 543
- The Control of the Galaxy, ed. M. Morris, 515
- 715 Planck Collaboration, Aghanim, N., Akrami, Y., et al.
- ⁷¹⁶ 2020, A&A, 641, A6, doi: 10.1051/0004-6361/201833910
- 717 Raj, A., & Nixon, C. J. 2021, ApJ, 909, 82,
- 718 doi: 10.3847/1538-4357/abdc25
- 719 Rees, M. J. 1988, Nature, 333, 523, doi: 10.1038/333523a0
- 720 Robertson, H. P. 1938, Annals of Mathematics, 39, 101
- ⁷²¹ Scargle, J. D., Norris, J. P., Jackson, B., & Chiang, J. 2013,
 ⁷²² ApJ, 764, 167, doi: 10.1088/0004-637X/764/2/167
- ⁷²³ Śniegowska, M., Grzędzielski, M., Czerny, B., & Janiuk, A.
 ⁷²⁴ 2023, A&A, 672, A19, doi: 10.1051/0004-6361/202243828
- 725 Speri, L., Antonelli, A., Sberna, L., et al. 2023, Phys. Rev.
- 726 X, 13, 021035, doi: 10.1103/PhysRevX.13.021035
- ⁷²⁷ Strüder, L., Briel, U., Dennerl, K., et al. 2001, A&A, 365,
 ⁷²⁸ L18, doi: 10.1051/0004-6361:20000066
- 729 Suková, P., Zajaček, M., Witzany, V., & Karas, V. 2021,
- ⁷³⁰ ApJ, 917, 43, doi: 10.3847/1538-4357/ac05c6
- Turner, M. J. L., Abbey, A., Arnaud, M., et al. 2001, A&A,
 365, L27, doi: 10.1051/0004-6361:20000087
- 733 Virtanen, P., Gommers, R., Oliphant, T. E., et al. 2020,
- ⁷³⁴ Nature Methods, 17, 261, doi: 10.1038/s41592-019-0686-2
- 735 Wang, D. 2024, arXiv e-prints, arXiv:2402.07177,
- 736 doi: 10.48550/arXiv.2402.07177

- 737 Wevers, T., & French, K. D. 2024, ApJL, 969, L17,
- doi: 10.3847/2041-8213/ad5725
- 739 Wevers, T., Pasham, D. R., Jalan, P., Rakshit, S., &
- 740 Arcodia, R. 2022, A&A, 659, L2,
- 741 doi: 10.1051/0004-6361/202243143
- 742 Wevers, T., French, K. D., Zabludoff, A. I., et al. 2024,
- ⁷⁴³ arXiv e-prints, arXiv:2406.02678,
- 744 doi: 10.48550/arXiv.2406.02678
- 745 Will, C. M. 2012, Classical and Quantum Gravity, 29,
- 746 217001, doi: 10.1088/0264-9381/29/21/217001
- 747 Wright, E. L. 2006, PASP, 118, 1711, doi: 10.1086/510102
- 748 Xian, J., Zhang, F., Dou, L., He, J., & Shu, X. 2021, ApJL,
- 749 921, L32, doi: 10.3847/2041-8213/ac31aa
- 750 Yao, P. Z., Quataert, E., Jiang, Y.-F., Lu, W., & White,
- 751 C. J. 2024. https://arxiv.org/abs/2407.14578
- 752 Zalamea, I., Menou, K., & Beloborodov, A. M. 2010,
- 753 MNRAS, 409, L25, doi: 10.1111/j.1745-3933.2010.00930.x
- 754 Zhao, Z. Y., Wang, Y. Y., Zou, Y. C., Wang, F. Y., & Dai,
- ⁷⁵⁵ Z. G. 2022, A&A, 661, A55,
- 756 doi: 10.1051/0004-6361/202142519
- 757 Zhou, C., Zhong, B., Zeng, Y., Huang, L., & Pan, Z. 2024.
- 758 https://arxiv.org/abs/2405.06429