# X-ray spectra of CTTS

# Modelling the accretion shock

Hans Moritz Günther and Jürgen. H. M. M. Schmitt Hamburger Sternwarte, Universität Hamburg, e-mail: moritz.guenther@hs.uni-hamburg.de

#### Abstract

Three classical T Tauri stars (CTTS) have been observed with high S/N high resolution X-ray spectroscopy yet, TW Hya, BP Tau and V4046 Sgr. They show high densities and it is still a matter of debate if they are exceptional objects or representatives of their class. V4046 Sgr is a close binary consisting of two K stars with typical signatures of CTTS. It has been observed with Chandra/HETGS for 150 ks. The helium-like triplets of Si, Ne and O are clearly detected. Using a 1-dim, stationary, non-equlibrium model of the post shock accretion zone, the emission observed can be decomposed in accretion and coronal components. The accretion with its comparatively high densities explains unusual f/i ratios in the triplets, the coronal component explains the activity seen in the light curve and the high energy emission from temperatures, which are not reached in an accretion shock.

#### Model: Geometry and Assumptions

The accreted material follows the field lines and impacts on the stellar surface (Shu et al. 1994). A shock develops, where the ram pressure equals the thermodynamic pressure of the surrounding stellar atmosphere (see sketch).



#### stellar interior

A sketch of the accretion shock geometry

The shock is treated as a mathematical discontinuity, where the ion gas gets heated according to the Rankine-Hugoniot conditions. It sets the origin of the z coordinate. In the post shock cooling zone we stepwise integrate the hydrodynamic and the ionisation equations under the following assumptions:

- No heat conduction
- No viscosity
- Maxwell distribution in each component
- Stationarity of problem
- No optical depth effects
- Magnetic field  $\vec{B} || \vec{v} \Rightarrow$  The magnetic field does not influence the flow.
- Hydrodynamics and atomic physics can be treated separately during each step.

This leads to an equation for the ion temperature  $T_{\text{ion}}$  in depth z:

$$v\frac{\mathrm{d}}{\mathrm{d}z}\left(\frac{3}{2}kT_{\mathrm{ion}}\right) + vnkT_{\mathrm{ion}}\frac{\mathrm{d}}{\mathrm{d}z}\left(\frac{1}{n}\right) = -\omega_{ei} \qquad (1)$$

for the ions with number density n and bulk velocity v, where k is the Boltzmann constant.  $\omega_{ei}$  describes the heat flow from the ions to the cooler electrons according to Coulomb interactions.

Model Parameters: The infall velocity  $v_0$ , the preshock density  $n_0$  and the abundances of C, N, O, Ne, Mg, Si, S and Fe.

#### References

Results: Temperature and density in the shock and predicted line ratios



left: Temperature (black) and density (red) profiles – right: O VII ratio of forbidden and intercombination line to resonance line for different  $v_0$ ,  $n_0$  and background radiation temperatures.

#### Application to classical T Tauri stars: Separating accretion and corona





Emission in the He-like neon triplet. Labelled are the **r**esonance, **i**ntercombination and **f**orbidden line of the He-like triplet. Only the high-density accretion component contributes to the i line.

### Best fit results

| Parameter                                                         | TW Hya                                    | V4046 Sgr                                |
|-------------------------------------------------------------------|-------------------------------------------|------------------------------------------|
| $\overline{v_0}$                                                  | 525  km/s                                 | 535  km/s                                |
| $n_0$                                                             | $10^{12} \text{ cm}^{-3}$                 | $2 \times 10^{11} \text{ cm}^{-3}$       |
| filing factor                                                     | 0.2%                                      | 0.1%                                     |
| $\frac{\mathrm{d}M}{\mathrm{d}t}$                                 | $2 \times 10^{-10} \ M_{\odot}/\text{yr}$ | $3 \times 10^{-11} \ M_{\odot}/{\rm yr}$ |
| $\chi^2 \overline{\mathrm{d}t} $ (dof)                            | 1.57(577)                                 | $1.23 \ (1113)^a$                        |
| observed flux (energy band 0.3-2.5 keV) in erg/cm <sup>2</sup> /s |                                           |                                          |
| shock                                                             | $3.7 \times 10^{-12}$                     | $1.2 \times 10^{-12}$                    |
| corona                                                            | $2.0 \times 10^{-12}$                     | $1.2 \times 10^{-12}$                    |

a: Churazov weighting necessary because of the small number of counts per bin

# Comparison to other mass accretion rate estimates

For comparison: Mass accretion rates for TW Hya

- optical:  $1 \times 10^{-9} M_{\odot}/\text{yr}$  (Alencar & Batalha 2002)
- optical:  $1 \times 10^{-8} \ M_{\odot}/\text{yr}$  (Batalha et al. 2002)
- UV:  $3 \times 10^{-8} M_{\odot}/\text{yr}$  (Kastner et al. 2002)

Our rates are much smaller, but we probe only the highest energies!

#### Interpretation

- Accretion shock can be simulated with well matched f/i lines ratios in the He-like triplets
- Shock: Soft component Corona: Hard component
- $\bullet$  Mass accretion very low  $\Rightarrow$  only fast accretion stream seen in X-rays  $\Rightarrow$  accretion spot likely inhomogeneous

Alencar, S. H. P. & Batalha, C. 2002, ApJ, 571, 378
Batalha, C., Batalha, N. M., Alencar, S. H. P., Lopes, D. F., & Duarte, E. S. 2002, ApJ, 580, 343

Kastner, J. H., Huenemoerder, D. P., Schulz, N. S., Canizares, C. R., & Weintraub, D. A. 2002, ApJ, 567, 434 Shu, F., Najita, J., Ostriker, E., et al. 1994, ApJ, 429, 781