Accretion, winds & jets:

High-energy emission from young stellar objects

Hans Moritz Günther CfA

Outline

- Introduction
- Classical T Tauri stars (CTTS)
 - Observational pecularities
 - Accretion
 - Jets & winds
- Herbig Ae/Be stars (HAeBe)
- Conclusion

Introduction

Phases of star formation

Introduction

Young stars

Classical T Tauri Stars (CTTS)	Herbig Ae/Be Stars (HAeBe)
 Spectral type M-F 	 Spectral type A-B
• Age < 30 Myr	 Age < a few Myr
IR excess	 IR excess
• Hα EW > 10 Å	 No convective
 Cool stars 	envelope
 X-rays from active corona 	 Often unresolved companions

Classical T Tauri Stars

Classical T Tauri Stars

Observations in X-rays

He-like triplets

Günther et al., A&A (2006)

He-like triplets: Theory

f/i large:

- low density
- weak UV-field

He-like triplets

Günther et al., A&A (2006)

CTTS: Observations

- CTTS show excess emission at 1-2 MK.
- CTTS show low f/i ratios.

Classical T Tauri stars

Accretion

The accretion model

- 1D stationary
- optically thin
- no heat conduction
- Maxwell velocity distribution (different temperature for electrons / ions)
- magnetic field does not change dynamics
- non-equilibrium ionisation calculation

Günther et al., A&A (2008)

Fits to He-like triplets

Best-fit results

parameter	TW Hya	V4046 Sgr
infall velocity	525 km/s	540 km/s
preshock density	10 ¹² /cm ³	2 10 ¹¹ /cm ³
shock/corona (0.3-2.5 keV)	2/1	1/1
filling factor	0.20%	0.10%
mass accretion rate	2 10 - IVI _{sun} /year	3 10 - IVI _{sun} /year
best fit reduced χ^2	1.57	1.2

Best-fit results

parameter	TW Hya	V4046 Sgr
infall velocity	525 km/s	540 km/s
preshock density	10 ¹² /cm ³	2 10 ¹¹ /cm ³
shock/corona (0.3-2.5 keV)	2/1	1/1
filling factor	0.20%	0.10%
mass accretion rate	2 10 ⁻¹⁰ M _{sun} /year	3 10 ⁻¹¹ M _{sun} /year
best fit reduced χ^2	1.57	1.2

CTTS: Accretion

- An accretion spot contributes to the X-ray luminosity.
- It is responsible for the soft emission.
- The emitting region has a high density, leading to a low f/i-ratio.

Classical T Tauri stars

Jets & Winds

Winds

Collimated outflows

HST/STIS: Bacciotti et al., ApJ (2000)

Chandra: Güdel et al., A&A (2008)

X-rays from jets

Model: Günther, Matt & Li, A&A (2009)

X-ray generation in the jet

Günther, Matt & Li, A&A (2009)

CTTS: Jets

- Jets can emit X-rays.
- They are heated by internal shocks.
- Several shock scenarios can explain the observed emission.

HAeBe stars

HST/STIS: Grady at al., ApJ (2000)

Chandra (20 ks)

HAeBes

HD 163296: XMM-Spectrum

HAeBes

HAeBes: HD 163296

- Its X-ray emission is soft.
- It possibly originates in a jet similar to CTTS.

Conclusion

- Origin of X-ray emission in CTTS
 - Corona
 - Applied model to observations:
 X-ray and UV emission from accretion spot
 - Model: Inner jet heating by shocks
- Origin of X-ray emission in HAeBes
 - Discovered hot component: Corona
 - Discovered soft component offset from stellar surface: Jet

Soft X-ray excess

Robrade & Schmitt, A&A (2007), Günther & Schmitt, A&A (2008)

Accretion flow

Romanova et al., ApJ (2004)

Ardila et al., ApJ (2002)

Fits to broad band spectra

HAeBes

HD 163296: OVII f/i ratio

Günther & Schmitt, A&A (2009)